IEEE/CAA Journal of Automatica Sinica
Citation: | B. Y. Zheng, C. Song, and L. Liu, “Cyclic-pursuit-based circular formation control of mobile agents with limited communication ranges and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1860–1870, Sept. 2023. doi: 10.1109/JAS.2023.123576 |
[1] |
G.-P. Liu and S. Zhang, “A survey on formation control of small satellites,” Proceedings of the IEEE, vol. 106, no. 3, pp. 440–457, 2018. doi: 10.1109/JPROC.2018.2794879
|
[2] |
A. Bono, L. D’Alfonso, G. Fedele, and V. Gazi, “Target capturing in an ellipsoidal region for a swarm of double integrator agents,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 801–811, 2022. doi: 10.1109/JAS.2022.105551
|
[3] |
C. Song, L. Liu, G. Feng, and S. Xu, “Coverage control for heterogeneous mobile sensor networks on a circle,” Automatica, vol. 63, pp. 349–358, 2016. doi: 10.1016/j.automatica.2015.10.044
|
[4] |
M. Pavone and E. Frazzoli, “Decentralized policies for geometric pattern formation and path coverage,” Journal of Dynamic Systems,Measurement,and Control, vol. 129, no. 5, pp. 633–643, 2007. doi: 10.1115/1.2767658
|
[5] |
T.-H. Kim and T. Sugie, “Cooperative control for target-capturing task based on a cyclic pursuit strategy,” Automatica, vol. 43, no. 8, pp. 1426–1431, 2007. doi: 10.1016/j.automatica.2007.01.018
|
[6] |
Q. Wang, Y. Wang, and H. Zhang, “The formation control of multi-agent systems on a circle,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 148–154, 2018. doi: 10.1109/JAS.2016.7510022
|
[7] |
J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of vehicles in cyclic pursuit,” IEEE Trans. Automatic Control, vol. 49, no. 11, pp. 1963–1974, 2004. doi: 10.1109/TAC.2004.837589
|
[8] |
A. Sinha and D. Ghose, “Generalization of nonlinear cyclic pursuit,” Automatica, vol. 43, no. 11, pp. 1954–1960, 2007. doi: 10.1016/j.automatica.2007.03.024
|
[9] |
W. Yao, H. Lu, Z. Zeng, J. Xiao, and Z. Zheng, “Distributed static and dynamic circumnavigation control with arbitrary spacings for a heterogeneous multi-robot system,” Journal of Intelligent &Robotic Systems, vol. 94, no. 3, pp. 883–905, 2019.
|
[10] |
C. Wang, G. Xie, and M. Cao, “Forming circle formations of anonymous mobile agents with order preservation,” IEEE Trans. Automatic Control, vol. 58, no. 12, pp. 3248–3254, 2013. doi: 10.1109/TAC.2013.2263653
|
[11] |
C. Wang and G. Xie, “Limit-cycle-based decoupled design of circle formation control with collision avoidance for anonymous agents in a plane,” IEEE Trans. Automatic Control, vol. 62, no. 12, pp. 6560–6567, 2017. doi: 10.1109/TAC.2017.2712758
|
[12] |
Y. Wang, T. Shen, C. Song, and Y. Zhang, “Circle formation control of second-order multi-agent systems with bounded measurement errors,” Neurocomputing, vol. 397, pp. 160–167, 2020. doi: 10.1016/j.neucom.2020.02.037
|
[13] |
X. Yu, X. Xu, L. Liu, and G. Feng, “Circular formation of networked dynamic unicycles by a distributed dynamic control law,” Automatica, vol. 89, pp. 1–7, 2018. doi: 10.1016/j.automatica.2017.11.021
|
[14] |
X. Peng, K. Guo, X. Li, and Z. Geng, “Cooperative moving-target enclosing control for multiple nonholonomic vehicles using feedback linearization approach,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 51, no. 8, pp. 4929–4935, 2019.
|
[15] |
A. Sen, S. R. Sahoo, and M. Kothari, “Circumnavigation on multiple circles around a nonstationary target with desired angular spacing,” IEEE Transactions on Cybernetics, vol. 51, no. 1, pp. 222–232, 2019.
|
[16] |
H. Yang and Y. Wang, “Cyclic pursuit-fuzzy PD control method for multi-agent formation control in 3D space,” International J. Fuzzy Systems, vol. 23, pp. 1904–1913, 2021. doi: 10.1007/s40815-020-00892-z
|
[17] |
A. M. Bruckstein, N. Cohen, and A. Efrat, “Ants, crickets and frogs in cyclic pursuit,” Center Intell. Syst., Technion-Israel Inst. Technol, Haifa, Israel, Tech. Rep. 9105, 1991.
|
[18] |
M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems while preserving connectedness,” IEEE Trans. Robotics, vol. 23, no. 4, pp. 693–703, 2007. doi: 10.1109/TRO.2007.900638
|
[19] |
A. Gasparri, L. Sabattini, and G. Ulivi, “Bounded control law for global connectivity maintenance in cooperative multirobot systems,” IEEE Trans. Robotics, vol. 33, no. 3, pp. 700–717, 2017. doi: 10.1109/TRO.2017.2664883
|
[20] |
C. Song, L. Liu, and S. Xu, “Circle formation control of mobile agents with limited interaction range,” IEEE Trans. Automatic Control, vol. 64, no. 5, pp. 2115–2121, 2019. doi: 10.1109/TAC.2018.2866985
|
[21] |
J. Wang, S. Li, and Y. Zou, “Connectivity-maintaining consensus of multi-agent systems with communication management based on predictive control strategy,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 1–11, 2022. doi: 10.1109/JAS.2022.106118
|
[22] |
J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003. doi: 10.1016/S0005-1098(03)00167-5
|
[23] |
R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. doi: 10.1109/TAC.2004.834113
|
[24] |
U. Munz, A. Papachristodoulou, and F. Allgower, “Consensus in multi-agent systems with coupling delays and switching topology,” IEEE Trans. Automatic Control, vol. 56, no. 12, pp. 2976–2982, 2011. doi: 10.1109/TAC.2011.2161052
|
[25] |
P. Lin and Y. Jia, “Average consensus in networks of multi-agents with both switching topology and coupling time-delay,” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 1, pp. 303–313, 2008. doi: 10.1016/j.physa.2007.08.040
|
[26] |
J. Hu and Y. Hong, “Leader-following coordination of multi-agent systems with coupling time delays,” Physica A: Statistical Mechanics and its Applications, vol. 374, no. 2, pp. 853–863, 2007. doi: 10.1016/j.physa.2006.08.015
|
[27] |
Y. Qu, H. Xu, C. Song, and Y. Fan, “Coverage control for mobile sensor networks with time-varying communication delays on a closed curve,” Journal of the Franklin Institute, vol. 357, no. 17, pp. 12109–12124, 2020. doi: 10.1016/j.jfranklin.2020.08.005
|
[28] |
H. Lu, W. Yao, and L. Chen, “Distributed multi-robot circumnavigation with dynamic spacing and time delay,” Journal of Intelligent &Robotic Systems, vol. 99, no. 1, pp. 165–182, 2020.
|
[29] |
V. L. Freitas, S. Yanchuk, H. L. Grande, and E. E. Macau, “The effects of time-delay and phase lags on symmetric circular formations of mobile agents,” The European Physical Journal Special Topics, vol. 230, no. 14, pp. 2857–2864, 2021.
|
[30] |
B. Ning and Q.-L. Han, “Order-preserved preset-time cooperative control: A monotone system-based approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1603–1611, 2022. doi: 10.1109/JAS.2022.105440
|
[31] |
D. Zelazo, A. Rahmani, and M. Mesbahi, “Agreement via the edge laplacian,” in Proc. 46th IEEE Conf. Decision and Control, 2007, pp. 2309–2314.
|
[32] |
M. Lu, “Rendezvous with connectivity preservation of mobile agents subject to uniform time-delays,” Automatica, vol. 88, pp. 31–37, 2018. doi: 10.1016/j.automatica.2017.11.003
|
[33] |
Y. Yang, Y. Shi, and D. Constantinescu, “Connectivity-preserving synchronization of time-delay euler–lagrange networks with bounded actuation,” IEEE Trans. Cybernetics, vol. 51, no. 7, pp. 3469–3482, 2021. doi: 10.1109/TCYB.2019.2914403
|
[34] |
S. A. Ajwad, E. Moulay, M. Defoort, T. Ménard, and P. Coirault, “Collision-free formation tracking of multi-agent systems under communication constraints,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1345–1350, 2021. doi: 10.1109/LCSYS.2020.3036809
|
[35] |
X. Ge, Q.-L. Han, J. Wang, and X.-M. Zhang, “A scalable adaptive approach to multi-vehicle formation control with obstacle avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 990–1004, 2022. doi: 10.1109/JAS.2021.1004263
|
[36] |
J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, New Jersey: Prentice-Hall, 1991.
|