A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Q. Miao, W. Zheng, Y. Lv, M. Huang, W. Ding, and F.-Y. Wang, "DAO to HANOI via DeSci: AI paradigm shifts from AlphaGo to ChatGPT, " IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 877–897, Apr. 2023. doi: 10.1109/JAS.2023.123561
Citation: Q. Miao, W. Zheng, Y. Lv, M. Huang, W. Ding, and F.-Y. Wang, "DAO to HANOI via DeSci: AI paradigm shifts from AlphaGo to ChatGPT, " IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 877–897, Apr. 2023. doi: 10.1109/JAS.2023.123561

DAO to HANOI via DeSci: AI Paradigm Shifts from AlphaGo to ChatGPT

doi: 10.1109/JAS.2023.123561
Funds:

the National Key Research and Development Program of China 2020YFB2104001

the National Natural Science Foundation of China 62271485

the National Natural Science Foundation of China 61903363

the National Natural Science Foundation of China U1811463

Open Project of the State Key Laboratory for Management and Control of Complex Systems 20220117

More Information
  • From AlphaGo to ChatGPT, the field of AI has launched a series of remarkable achievements in recent years. Analyzing, comparing, and summarizing these achievements at the paradigm level is important for future AI innovation, but has not received sufficient attention. In this paper, we give an overview and perspective on machine learning paradigms. First, we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective. Accordingly, we give an overview on three basic and twelve extended learning paradigms, such as Ensemble Learning, Transfer Learning, etc., with figures in unified style. We further analyze three advanced paradigms, i.e., AlphaGo, AlphaFold and ChatGPT. Second, to enable more efficient and effective scientific discovery, we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science (DeSci) movement based on decentralized autonomous organization (DAO). To this end, we design the Hanoi framework, which integrates human factors, parallel intelligence based on a combination of artificial systems and the natural world, and the DAO to inspire AI innovations.

     

  • loading
  • [1]
    W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity, " The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943. doi: 10.1007/BF02478259
    [2]
    D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, "Mastering the game of Go with deep neural networks and tree search, " Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.
    [3]
    L. Ouyang, J. Wu, X. Jiang et al., "Training language models to follow instructions with human feedback, " arXiv preprint arXiv: 2203.02155, 2022.
    [4]
    G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, "Montecarlo tree search: A new framework for game ai, " in Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 4, no. 1, 2008, pp. 216–217.
    [5]
    T. S. Kuhn, The Structure of Scientific Revolutions. Chicago: University of Chicago Press, 1962.
    [6]
    R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
    [7]
    J. Xi, F. Zhu, P. Ye, Y. Lv, H. Tang, and F. -Y. Wang, "Hmdrl: Hierarchical mixed deep reinforcement learning to balance vehicle supply and demand, " IEEE Transactions On Intelligent Transportation Systems, vol. 23, no. 11, pp. 21861–21872, 2022. doi: 10.1109/TITS.2022.3191752
    [8]
    L. Xia, Q. Li, R. Song, and H. Modares, "Optimal Synchronization Control of Heterogeneous Asymmetric Input-Constrained Unknown Nonlinear MASs via Reinforcement Learning, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 3, pp. 520–532, 2022. doi: 10.1109/JAS.2021.1004359
    [9]
    T. G. Dietterich, "Ensemble methods in machine learning, " in International Workshop on Multiple Classifier Systems, 2000.
    [10]
    I. D. Mienye and Y. Sun, "A survey of ensemble learning: Concepts, algorithms, applications, and prospects, " IEEE Access, vol. 10, pp. 99129–99149, 2022. doi: 10.1109/ACCESS.2022.3207287
    [11]
    H. A. Simon and G. Lea, "Problem solving and rule induction: A unified view, " Knowledge and cognition, pp. 105–127, 1974.
    [12]
    B. Settles, "Active learning literature survey, " 2009.
    [13]
    Y. Bengio, J. Louradour, R. Collobert, and J. Weston, "Curriculum learning, " in Proceedings of the 26th annual international conference on machine learning, 2009, pp. 41–48.
    [14]
    X. Wang, Y. Chen, and W. Zhu, "A survey on curriculum learning, " IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
    [15]
    R. Caruana, "Multitask Learning, " Machine Learning, vol. 28, no. 1, pp. 41–75, Jul. 1997.
    [16]
    R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning, " in Proceedings of the 25th international conference on Machine learning, 2008, pp. 160- 167.
    [17]
    L. Y. Pratt, "Discriminability-Based Transfer between Neural Networks, " in Advances in Neural Information Processing Systems, vol. 5. Morgan-Kaufmann, 1992.
    [18]
    F. Zhuang, Z. Qi, K. Duan et al., "A comprehensive survey on transfer learning, " Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.
    [19]
    T. Hospedales, A. Antoniou, P. Micaelli et al., "Metalearning in neural networks: A survey, " IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 9, pp. 5149–5169, 2021.
    [20]
    Y. Tian, X. Zhao, and W. Huang, "Meta-learning approaches for learning-to-learn in deep learning: A survey, " Neurocomputing, vol. 494, pp. 203–223, Jul. 2022.
    [21]
    S. Thrun and T. M. Mitchell, "Lifelong robot learning, " Robotics and autonomous systems, vol. 15, no. 1–2, pp. 25–46, 1995.
    [22]
    Z. Chen and B. Liu, "Lifelong machine learning, " Syn thesis Lectures on Artificial Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–207, 2018.
    [23]
    S. Becker and G. E. Hinton, "Self-organizing neural network that discovers surfaces in random-dot stereograms, " Nature, vol. 355, no. 6356, pp. 161–163, 1992. doi: 10.1038/355161a0
    [24]
    T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, "A simple framework for contrastive learning of visual representations, " in International conference on machine learning. PMLR, 2020, pp. 1597–1607.
    [25]
    D. He, Y. Xia, T. Qin et al., "Dual learning for machine translation, " Advances in neural information processing systems, vol. 29, 2016.
    [26]
    L. Li, Y. Lin, N. Zheng, and F. -Y. Wang, "Parallel learning: A perspective and a framework, " IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3, pp. 389–395, 2017. doi: 10.1109/JAS.2017.7510493
    [27]
    L. Li, W. Xiao, W. Kunfeng, L. Yilun, X. Jingmin, C. Long, X. Linhai, T. Bin, A. Yunfeng, W. Jian, C. Dongpu, L. Yuehu, W. Chenghong, Z. Nanning, and W. Fei-Yue, "Parallel testing of vehicle intelligence via virtual-real interaction, " Science Robotics, vol. 4, no. 28, p. eaaw4106, 2019.
    [28]
    Z. -H. Zhou, "Abductive learning: towards bridging machine learning and logical reasoning, " Science China Information Sciences, vol. 62, pp. 1–3, 2019.
    [29]
    H. B. McMahan, E. Moore, D. Ramage et al., "Communication-efficient learning of deep networks from decentralized data, " in International Conference on Artificial Intelligence and Statistics, 2016.
    [30]
    T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, "Federated learning: Challenges, methods, and future directions, " IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020. doi: 10.1109/MSP.2020.2975749
    [31]
    L. Hansen and P. Salamon, "Neural network ensembles, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990. doi: 10.1109/34.58871
    [32]
    R. E. Schapire, "The strength of weak learnability, " Machine learning, vol. 5, pp. 197–227, 1990.
    [33]
    O. Sagi and L. Rokach, "Ensemble learning: A survey, " Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, 2018.
    [34]
    S. Tong and D. Koller, "Support vector machine active learning with applications to text classification, " J. Mach. Learn. Res., vol. 2, pp. 45–66, 2002.
    [35]
    S. J. Pan and Q. Yang, "A survey on transfer learning, " IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010. doi: 10.1109/TKDE.2009.191
    [36]
    K. Weiss, T. M. Khoshgoftaar, and D. Wang, "A survey of transfer learning, " Journal of Big data, vol. 3, no. 1, pp. 1–40, 2016. doi: 10.1186/s40537-015-0036-x
    [37]
    M. E. Peters, M. Neumann, M. Iyyer et al., "Deep Contextualized Word Representations, " in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long Papers). New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp. 2227–2237.
    [38]
    A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is All you Need, " in Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., 2017.
    [39]
    A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., "Improving language understanding by generative pre-training, " 2018.
    [40]
    J. Devlin, M. -W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, " in Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186.
    [41]
    M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, " arXiv preprint arXiv: 1910.13461, 2019.
    [42]
    C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu et al., "Exploring the limits of transfer learning with a unified text-to-text transformer. " J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67, 2020.
    [43]
    Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, "Roberta: A robustly optimized bert pretraining approach, " arXiv preprint arXiv: 1907.11692, 2019.
    [44]
    Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, "Albert: A lite bert for self-supervised learning of language representations, " arXiv preprint arXiv: 1909.11942, 2019.
    [45]
    Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, "ERNIE: Enhanced language representation with informative entities, " in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 1441–1451.
    [46]
    C. Finn, P. Abbeel, and S. Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, " in Proceedings of the 34th International Conference on Machine Learning. PMLR, Jul. 2017, pp. 1126–1135.
    [47]
    S. Mazumder, N. Ma, and B. Liu, "Towards a continuous knowledge learning engine for chatbots, " arXiv preprint arXiv: 1802.06024, 2018.
    [48]
    Z. Hu, Y. Xing, W. Gu, D. Cao, and C. Lv, "Driver anomaly quantification for intelligent vehicles: A contrastive learning approach with representation clustering, " IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 37–47, 2023. doi: 10.1109/TIV.2022.3163458
    [49]
    H. Hu, H. Wang, Z. Liu, and W. Chen, "DomainInvariant Similarity Activation Map Contrastive Learning for Retrieval-Based Long-Term Visual Localization, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 2, pp. 313–328, 2022. doi: 10.1109/JAS.2021.1003907
    [50]
    F. -Y. Wang, "Artificial societies, computational experiments, and parallel systems: A discussion on computational theory of complex social-economic systems, " Complex Systems and Complexity Science, vol. 1, no. 4, pp. 25–35, 2004. doi: 10.3969/j.issn.1672-3813.2004.04.002
    [51]
    F. -Y. Wang, "Parallel system methods for management and control of complex systems, " Control Decision, vol. 19, no. 5, pp. 485–489, 2004.
    [52]
    F. -Y. Wang, "Computational theory and methods for complex systems, " China Basic Science, vol. 6, no. 41, pp. 3–10, 2004.
    [53]
    X. Li, H. Duan, Y. Tian, and F. -Y. Wang, "Exploring Image Generation for UAV Change Detection, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 6, pp. 1061–1072, 2022. doi: 10.1109/JAS.2022.105629
    [54]
    Y. Lv, Y. Chen, J. Jin, L. Zhenjiang, P. Ye, and F. Zhu, "Parallel transportation: virtual-real interaction for intelligent traffic management and control, " Chinese Journal of Intelligent Science and Technology, vol. 1, no. 1, pp. 21–33, 2019.
    [55]
    Y. Chen, Y. Lv, and F. -Y. Wang, "Traffic Flow Imputation Using Parallel Data and Generative Adversarial Networks, " IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 4, pp. 1624–1630, Apr. 2020.
    [56]
    D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., "Mastering the game of go with deep neural networks and tree search, " nature, vol. 529, no. 7587, pp. 484–489, 2016. doi: 10.1038/nature16961
    [57]
    J. Jumper, R. Evans, A. Pritzel et al., "Highly accurate protein structure prediction with alphafold, " Nature, vol. 596, no. 7873, pp. 583–589, 2021. doi: 10.1038/s41586-021-03819-2
    [58]
    F. -Y. Wang, "Parallel Intelligence in Metaverses: Welcome to Hanoi!" IEEE Intelligent Systems, vol. 37, no. 1, pp. 16–20, Jan. 2022.
    [59]
    F. -Y. Wang, W. Ding, X. Wang, J. Garibaldi, S. Teng, R. Imre, and C. Olaverri-Monreal, "The dao to desci: Ai for free, fair, and responsibility sensitive sciences, " IEEE Intelligent Systems, vol. 37, no. 2, pp. 16–22, 2022. doi: 10.1109/MIS.2022.3167070
    [60]
    L. Cao, "Decentralized ai: Edge intelligence and smart blockchain, metaverse, web3, and desci, " IEEE Intelligent Systems, vol. 37, no. 3, pp. 6–19, 2022. doi: 10.1109/MIS.2022.3181504
    [61]
    C. Zhao, X. Dai, Y. Lv, J. Niu, and Y. Lin, "Decentralized autonomous operations and organizations in transverse: Federated intelligence for smart mobility, " IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022.
    [62]
    C. Zhao, Y. Lv, J. Jin, Y. Tian, J. Wang, and F. -Y. Wang, "Decast in transverse for parallel intelligent transportation systems and smart cities: Three decades and beyond, " IEEE Intelligent Transportation Systems Magazine, vol. 14, no. 6, pp. 6–17, 2022. doi: 10.1109/MITS.2022.3199557
    [63]
    F. -Y. Wang, "Parallel management: The DAO to smart ecological technology for complexity management intelligence, " Acta Automatica Sinica, vol. 48, no. 11, pp. 2655–2669, 2022.
    [64]
    F. -Y. Wang, "The DAO to MetaControl for MetaSystems in Metaverses: The System of Parallel Control Systems for Knowledge Automation and Control Intelligence in CPSS, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 11, pp. 1899–1908, 2022. doi: 10.1109/JAS.2022.106022
    [65]
    F. -Y. Wang, "The Metaverse of Mind: Perspectives on DeSci for DeEco and DeSoc, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 12, pp. 2043–2046, 2022. doi: 10.1109/JAS.2022.106106
    [66]
    X. Li, P. Ye, J. Li, Z. Liu, L. Cao, and F. -Y. Wang, "From features engineering to scenarios engineering for trustworthy AI: I & I, C & C, and V & V, " IEEE Intelligent Systems, vol. 37, no. 4, pp. 18–26, 2022. doi: 10.1109/MIS.2022.3197950
    [67]
    F. -Y. Wang, X. Wang, L. Li, and L. Li, "Steps toward parallel intelligence, " IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 4, pp. 345–348, 2016. doi: 10.1109/JAS.2016.7510067
    [68]
    K. Wang, C. Gou, N. Zheng, J. M. Rehg, and F. -Y. Wang, "Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives, " Artificial Intelligence Review, vol. 48, pp. 299–329, 2017. doi: 10.1007/s10462-017-9569-z
    [69]
    X. Li, K. Wang, Y. Tian, L. Yan, F. Deng, and F. -Y. Wang, "The paralleleye dataset: A large collection of virtual images for traffic vision research, " IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 6, pp. 2072–2084, 2019.
    [70]
    P. Ye, X. Wang et al., "Parallel cognition: Hybrid intelligence for human-machine interaction and management, " Frontiers of Information Technology & Electronic Engineering, vol. 23, no. 12, pp. 1765–1779, 2022.
    [71]
    J. Lu, X. Wang et al., "Parallel factories for smart industrial operations: From big AI models to field foundational models and scenarios engineering, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 12, pp. 2079–2086, 2022. doi: 10.1109/JAS.2022.106094
    [72]
    Y. Shen, Y. Liu et al., "Parallel sensing in metaverses: Virtual-real interactive smart systems for "6S" sensing, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 12, pp. 2047–2054, 2022. doi: 10.1109/JAS.2022.106115
    [73]
    J. Yang, X. Wang et al., "Parallel manufacturing for industrial metaverses: A new paradigm in smart manufacturing, " IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 12, pp. 2063–2070, 2022. doi: 10.1109/JAS.2022.106097

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article Metrics

    Article views (1099) PDF downloads(508) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return