IEEE/CAA Journal of Automatica Sinica
Citation: | W. Li and B. Ning, “Autonomous recommendation of fault detection algorithms for spacecraft,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 273–275, Jan. 2024. doi: 10.1109/JAS.2023.123423 |
[1] |
L. Basora, X. Olive, and T. Dubot, “Recent advances in anomaly detection methods applied to aviation,” Aerospace, vol. 6, no. 11, pp. 1–27, 2019. doi: 10.3390/aerospace6020011
|
[2] |
G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep learning for anomaly detection: A review,” ACM Comput. Surv., vol. 54, no. 2, pp. 1–38, 2022.
|
[3] |
J. Chen, J. Sun, and G. Wang, “From unmanned systems to autonomous intelligent systems,” Engineering, vol. 12, no. 5, pp. 16–19, 2022.
|
[4] |
K. Hundman, V. Constantinou, C. Laporte, et al., “Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding,” in Proc. KDD, 2018, pp. 387–395.
|
[5] |
X. Wang, J. Sun, G. Wang, et al., “Data-driven control of distributed event-triggered network systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 351–364, 2023.
|
[6] |
Y. Gao, T. Yang, M. Xu, and N. Xing, “An unsupervised anomaly detection approach for spacecraft based on normal behavior clustering,” in Proc. ICICTA, 2012, pp. 478–481.
|
[7] |
K. Li, Y. Wu, S. Song, et al., “A novel method for spacecraft electrical fault detection based on FCM clustering and wpsvm classification with PCA feature extraction,” in Proc. Institution of Mechanical Engineers, 2017, pp. 98–108.
|
[8] |
X. Liu, J. Li, H. Gao, et al., “On the hardness of labeled correlation clustering problem: A parameterized complexity view,” Theor. Comput. Sci., vol. 609, no. 3, pp. 583–593, 2016.
|
[9] |
B. Pilastre, L. Boussouf, S. D’Escrivan, et al., “Anomaly detection in mixed telemetry data using a sparse representation and dictionary learning,” Signal Process., vol. 168, pp. 1–10, 2020.
|
[10] |
Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly detection for multivariate time series through stochastic recurrent neural network,” in Proc. KDD, 2019, pp. 2828–2837.
|
[11] |
L. Xu, L. Zheng, W. Li, et al., “NVAE-GAN based approach for unsupervised time series anomaly detection,” CoRR, vol. abs/2101.02908, pp. 1–8, 2021.
|
[12] |
A. Garg, W. Zhang, J. Samaran, et al., “An evaluation of anomaly detection and diagnosis in multivariate time series,” IEEE Trans. Neural Networks Learning Systems, vol. 33, no. 6, pp. 2508–2517, 2022.
|
[13] |
C. M. Hurvich and C.-L. Tsai, “Regression and time series model selection in small samples,” Biometrika, vol. 76, pp. 297–307, 1989.
|
[14] |
T. Batu, L. Fortnow, E. Fischer, et al., “Testing random variables for independence and identity,” in Proc. FOCS, 2001, pp. 442–451.
|
[15] |
D. E. Rumelhart, G. Hinton, R. Williams, et al., “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, USA: MIT Press, 1986, vol. 1, pp. 318–362.
|
[16] |
P. Malhotra, A. Ramakrishnan, G. Anand, et al., “LSTM-based encoder-decoder for multi-sensor anomaly detection,” arXiv preprint arXiv: 1607.00148, 2016.
|
[17] |
S. Bai, J. Kolter, V. Koltun, et al., “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv preprint arXiv: 1803.01271, 2018.
|
[18] |
D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1544–1551, 2018.
|
[19] |
C. Zhang, D. Song, Y. Chen, et. al., “A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data,” in Proc. AAAI, 2019, pp. 1409–1416.
|
[20] |
B. Zhou, S. Liu, B. Hooi, et al., “BeatGAN: Anomalous rhythm detection using adversarially generated time series,” in Proc. IJCAI, 2019, pp. 4433–4439.
|