A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 2
Feb.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. Y. Zhang and D. K. Y. Yau, “CoRE: Constrained robustness evaluation of machine learning-based stability assessment for power systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 557–559, Feb. 2023. doi: 10.1109/JAS.2023.123252
Citation: Z. Y. Zhang and D. K. Y. Yau, “CoRE: Constrained robustness evaluation of machine learning-based stability assessment for power systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 557–559, Feb. 2023. doi: 10.1109/JAS.2023.123252

CoRE: Constrained Robustness Evaluation of Machine Learning-Based Stability Assessment for Power Systems

doi: 10.1109/JAS.2023.123252
More Information
  • loading
  • [1]
    F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, “Efficient database generation for data-driven security assessment of power systems,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 30–41, Jan. 2019.
    [2]
    G. Liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015 Ukraine blackout: Implications for false data injection attacks,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3317–3318, Apr. 2017. doi: 10.1109/TPWRS.2016.2631891
    [3]
    Z. Zhang, et al., “Analysis of moving target defense against false data injection attacks on power grid,” IEEE Trans. Inform. Forens. Secur., vol. 15, no. 1, pp. 2320–2335, Feb. 2020.
    [4]
    Z. Zhang, et al., “On feasibility of coordinated time-delay and false data injection attacks on cybercphysical systems,” IEEE Internet Things J., vol. 9, no. 11, pp. 8720–8736, Jun. 2022. doi: 10.1109/JIOT.2021.3118065
    [5]
    N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Proc. IEEE Symp. Security Privacy, Jun. 2017, pp. 39–57.
    [6]
    W. Xiang, et al. “Verification for machine learning, autonomy, and neural networks survey,” arXiv preprint arXiv: 1810.01989, 2018.
    [7]
    Y. Chen, Y. Tan, and D. Deka, “Is machine learning in power systems vulnerable?” in Proc. IEEE Smart Grid Comm., Oct. 2018, pp. 1–6.
    [8]
    A. Venzke and S. Chatzivasileiadis, “Verification of neural network behaviour: Formal guarantees for power system applications,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 383–397, Jan. 2017.
    [9]
    C. Ren and Y. Xu, “Robustness verification for machine learning-based power system dynamic security assessment models under adversarial examples,” IEEE Trans. Control Network Syst., 2022, DOI: 10.1109/TCNS.2022.3145285.
    [10]
    Z. Zhang, M. Sun, R. Deng, C. Kang, and M.-Y. Chow, “Physics-constrained robustness verification of intelligent security assessment for power systems,” IEEE Trans. Power Syst., 2022, DOI: 10.1109/TPWRS.2022.3169139.
    [11]
    I. Konstantelos, et al., “Implementation of a massively parallel dynamic security assessment platform for large-scale grids,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1417–1426, Mar. 2016.
    [12]
    J. Zhao, L. Mili, and M. Wang, “A generalized false data injection attacks against power system nonlinear state estimator and countermeasures,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4868–4877, May 2018. doi: 10.1109/TPWRS.2018.2794468
    [13]
    B. Pal and B. Chaudhuri, Robust Control in Power Systems. New York, USA: Spinger, 2006.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (274) PDF downloads(18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return