IEEE/CAA Journal of Automatica Sinica
Citation: | M. S. Song, F. Zhang, B. X. Huang, and P. F. Huang, “Anti-disturbance control for tethered aircraft system with deferred output constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 474–485, Feb. 2023. doi: 10.1109/JAS.2023.123222 |
[1] |
Z. Liu, Z. Han, and W. He, “Adaptive fault-tolerant boundary control of an autonomous aerial refueling hose system with prescribed constraints,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 4, pp. 2678–2688, Oct. 2022. doi: 10.1109/TASE.2021.3070140
|
[2] |
Z. Su, C. Li, and Y. Liu, “Anti-disturbance dynamic surface trajectory stabilization for the towed aerial recovery drogue under unknown airflow disturbances,” Mech. Syst. Signal Process., vol. 150, p. 107342, Mar. 2021. doi: 10.1016/j.ymssp.2020.107342
|
[3] |
J. Wu, H. Luo, and J. Ai, “Docking controller for autonomous aerial refueling with adaptive dynamic surface control,” IEEE Access, vol. 8, pp. 99 846–99 857, May 2020. doi: 10.1109/ACCESS.2020.2997649
|
[4] |
Z. Su, C. Li, and H. Wang, “Barrier Lyapunov function-based robust flight control for the ultra-low altitude airdrop under airflow disturbances,” Aerosp. Sci. Technol., vol. 84, pp. 375–386, Jan. 2019. doi: 10.1016/j.ast.2018.10.008
|
[5] |
Y. Song and S. Zhou, “Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints,” Automatica, vol. 98, pp. 314–322, Dec. 2018. doi: 10.1016/j.automatica.2018.09.032
|
[6] |
T. Gao, Y. Liu, D. Li, S. Tong, and T. Li, “Adaptive neural control using tangent time-varying BLFs for a class of uncertain stochastic nonlinear systems with full state constraints,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 1943–1953, Apr. 2021. doi: 10.1109/TCYB.2019.2906118
|
[7] |
H. Min, N. Duan, S. Xu, and S. Fei, “Barrier Lyapunov function-based tracking control for stochastic nonlinear systems with full-state constraints and input saturation,” J. Franklin Inst., vol. 357, no. 17, pp. 12414–12432, Nov. 2020. doi: 10.1016/j.jfranklin.2020.09.022
|
[8] |
Z. Hao, X. Yue, H. Wen, and C. Liu, “Full-state-constrained non-certainty-equivalent adaptive control for satellite swarm subject to input fault,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 482–495, Mar. 2022. doi: 10.1109/JAS.2021.1004216
|
[9] |
K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the control of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, Apr. 2009. doi: 10.1016/j.automatica.2008.11.017
|
[10] |
Y. Liu, S. Lu, S. Tong, X. Chen, C. P. Chen, and D.-J. Li, “Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints,” Automatica, vol. 87, pp. 83–93, Jan. 2018. doi: 10.1016/j.automatica.2017.07.028
|
[11] |
Z. Peng, R. Qi, and B. Jiang, “Adaptive fault tolerant control for hypersonic flight vehicle system with state constraints,” J. Franklin Inst., vol. 357, no. 14, pp. 9351–9377, Sep. 2020. doi: 10.1016/j.jfranklin.2020.07.014
|
[12] |
Y. Sun, C. Li, H. Qin, Z. Deng, and Z. Chen, “Robust neural network-based tracking control for unmanned surface vessels under deferred asymmetric constraints,” Int. J. Robust Nonlinear Control, vol. 32, no. 5, pp. 2741–2759, Apr. 2021.
|
[13] |
H. Zhuang, Q. Sun, Z. Chen, and Y. Jiang, “Back-stepping sliding mode control for pressure regulation of oxygen mask based on an extended state observer,” Automatica, vol. 119, p. 109106, Sep. 2020. doi: 10.1016/j.automatica.2020.109106
|
[14] |
T. Sun, L. Cheng, W. Wang, and Y. Pan, “Semiglobal exponential control of Euler-Lagrange systems using a sliding-mode disturbance observer,” Automatica, vol. 112, p. 108677, Feb. 2020. doi: 10.1016/j.automatica.2019.108677
|
[15] |
Y. Wang, H. Yu, and Y. Liu, “Speed-current single-loop control with overcurrent protection for pmsm based on time-varying nonlinear disturbance observer,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 179–189, Jan. 2022. doi: 10.1109/TIE.2021.3051594
|
[16] |
S. Xingling and W. Honglun, “Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO,” ISA Trans., vol. 57, pp. 10–22, Jul. 2015. doi: 10.1016/j.isatra.2015.02.013
|
[17] |
S. Kong, J. Sun, C. Qiu, Z. Wu, and J. Yu, “Extended state observer-based controller with model predictive governor for 3-D trajectory tracking of underactuated underwater vehicles,” IEEE Trans. Ind. Inform., vol. 17, no. 9, pp. 6114–6124, Sep. 2021. doi: 10.1109/TII.2020.3036665
|
[18] |
X. Shao, L. Wang, J. Li, and J. Liu, “High-order ESO based output feedback dynamic surface control for quadrotors under position constraints and uncertainties,” Aerosp. Sci. Technol., vol. 89, pp. 288–298, Jun. 2019. doi: 10.1016/j.ast.2019.04.003
|
[19] |
Z. Su and H. Wang, “Probe motion compound control for autonomous aerial refueling docking,” Aerosp. Sci. Technol., vol. 72, pp. 1–13, Jan. 2018. doi: 10.1016/j.ast.2017.10.033
|
[20] |
F. Esfandiari and H. K. Khalil, “Output feedback stabilization of fully linearizable systems,” Int. J. Control, vol. 56, no. 5, pp. 1007–1037, 1992. doi: 10.1080/00207179208934355
|
[21] |
H. K. Khalil and L. Praly, “High-gain observers in nonlinear feedback control,” Int. J. Robust Nonlinear Control, vol. 24, no. 6, pp. 993–1015, Feb. 2014. doi: 10.1002/rnc.3051
|
[22] |
Z. Pu, R. Yuan, J. Yi, and X. Tan, “A class of adaptive extended state observers for nonlinear disturbed systems,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5858–5869, Sep. 2015. doi: 10.1109/TIE.2015.2448060
|
[23] |
Z. Zhao and B. Guo, “A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 211–218, Jan. 2018. doi: 10.1109/TAC.2017.2720419
|
[24] |
X. Dai, Z. Wei, Q. Quan, and K. Cai, “Hose-drum-unit modeling and control for probe-and-drogue autonomous aerial refueling,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 4, pp. 2779–2791, Aug. 2020. doi: 10.1109/TAES.2019.2953413
|
[25] |
Y. Sun, H. Duan, and N. Xian, “Fractional-order controllers optimized via heterogeneous comprehensive learning pigeon-inspired optimization for autonomous aerial refueling hose-drogue system,” Aerosp. Sci. Technol., vol. 81, pp. 1–13, Oct. 2018. doi: 10.1016/j.ast.2018.07.034
|
[26] |
Y. Liu and S. Tong, “Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints,” Automatica, vol. 64, pp. 70–75, Feb. 2016. doi: 10.1016/j.automatica.2015.10.034
|
[27] |
Y. Liu, Q. Zhu, X. Zhou, and L. Wang, “Adaptive fuzzy tracking of switched nonstrict-feedback nonlinear systems with state constraints based on event-triggered mechanism,” ISA Trans., vol. 121, pp. 30–39, Feb. 2022. doi: 10.1016/j.isatra.2021.03.014
|
[28] |
K. Ro, T. Kuk, and J. W. Kamman, “Dynamics and control of hose-drogue refueling systems during coupling,” J. Guid. Control Dyn., vol. 34, no. 6, pp. 1694–1708, Dec. 2011. doi: 10.2514/1.53205
|
[29] |
M. Chen, H. Ma, Y. Kang, and Q. Wu, “Adaptive neural safe tracking control design for a class of uncertain nonlinear systems with output constraints and disturbances,” IEEE Trans. Cybern., vol. 52, no. 11, pp. 12571–12582, Nov. 2022. doi: 10.1109/TCYB.2021.3074566
|
[30] |
Y. Lu, P. Huang, and Z. Meng, “Adaptive neural network dynamic surface control of the post-capture tethered spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 2, pp. 1406–1419, Apr. 2020. doi: 10.1109/TAES.2019.2930015
|
[31] |
S. Zhang, Q. Wang, G. Yang, and M. Zhang, “Anti-disturbance backstepping control for air-breathing hypersonic vehicles based on extended state observer,” ISA Trans., vol. 92, pp. 84–93, Sep. 2019. doi: 10.1016/j.isatra.2019.02.017
|
[32] |
Z. Liu, J. Liu, and W. He, “Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint,” Automatica, vol. 77, pp. 302–310, Mar. 2017. doi: 10.1016/j.automatica.2016.11.002
|
[33] |
A. Dogan, S. Venkataramanan, and W. Blake, “Modeling of aerodynamic coupling between aircraft in close proximity,” J. Aircr., vol. 42, no. 4, pp. 941–955, 2005. doi: 10.2514/1.7579
|