IEEE/CAA Journal of Automatica Sinica
Citation: | W. J. Cao, L. Liu, and G. Feng, “Distributed adaptive output consensus of unknown heterogeneous non-minimum phase multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 997–1008, Apr. 2023. doi: 10.1109/JAS.2023.123204 |
[1] |
R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. doi: 10.1109/TAC.2004.834113
|
[2] |
W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under dynamically changing interaction topologies,” IEEE Trans. Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. doi: 10.1109/TAC.2005.846556
|
[3] |
R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. the IEEE, vol. 95, no. 1, pp. 215–233, 2007. doi: 10.1109/JPROC.2006.887293
|
[4] |
M. M. Polycarpou, Y. Yang, and K. M. Passino, “Cooperative control of distributed multi-agent systems,” IEEE Control Systems Magazine, vol. 21, pp. 1–27, 2001.
|
[5] |
W. Ren and Y. Cao, Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues. Springer, 2011, vol. 1.
|
[6] |
D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom.a Sinica, vol. 8, no. 2, pp. 319–333, 2021. doi: 10.1109/JAS.2021.1003820
|
[7] |
Y. Liu, D. Yao, H. Li, and R. Lu, “Distributed cooperative compound tracking control for a platoon of vehicles with adaptive NN,” IEEE Trans. Cybernetics, DOI: 10.1109/TCYB.2020.3044883.
|
[8] |
Z. Wang, M. He, T. Zheng, Z. Fan, and G. Liu, “Guaranteed cost consensus for high-dimensional multi-agent systems with time-varying delays,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 181–189, 2017.
|
[9] |
W. Yu, G. Chen, and M. Cao, “Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems,” Automatica, vol. 46, no. 6, pp. 1089–1095, 2010. doi: 10.1016/j.automatica.2010.03.006
|
[10] |
W. Chen, Z. Wang, D. Ding, and H. Dong, “Consensusability of discrete-time multi-agent systems under binary encoding with bit errors,” Automatica, vol. 133, p. 109867, 2021. doi: 10.1016/j.automatica.2021.109867
|
[11] |
W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems &Control Letters, vol. 59, no. 3–4, pp. 209–217, 2010.
|
[12] |
L. Ding, Q.-L. Han, and G. Guo, “Network-based leader-following consensus for distributed multi-agent systems,” Automatica, vol. 49, no. 7, pp. 2281–2286, 2013. doi: 10.1016/j.automatica.2013.04.021
|
[13] |
G. Difilippo, M. P. Fanti, and A. M. Mangini, “Maximizing convergence speed for second-order consensus in leaderless multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 2, pp. 259–269, 2021.
|
[14] |
W. Chen, D. Ding, H. Dong, G. Wei, and X. Ge, “Finite-horizon H ∞ bipartite consensus control of cooperation-competition multi-agent systems with round-robin protocols,” IEEE Trans. Cybernetics, vol. 51, no. 7, pp. 3699–3709, 2020.
|
[15] |
H. Jiang and H. He, “Data-driven distributed output consensus control for partially observable multi-agent systems,” IEEE Trans. Cybernetics, vol. 49, no. 3, pp. 848–858, 2018.
|
[16] |
Y. Su and J. Huang, “Cooperative output regulation of linear multi-agent systems,” IEEE Trans. Automatic Control, vol. 57, no. 4, pp. 1062–1066, 2011.
|
[17] |
P. Wieland, R. Sepulchre, and F. Allgöwer, “An internal model principle is necessary and sufficient for linear output synchronization,” Automatica, vol. 47, no. 5, pp. 1068–1074, 2011. doi: 10.1016/j.automatica.2011.01.081
|
[18] |
W. Hu, L. Liu, and G. Feng, “Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy,” IEEE Trans. Cybernetics, vol. 47, no. 8, pp. 1914–1924, 2016.
|
[19] |
Y.-Y. Qian, L. Liu, and G. Feng, “Output consensus of heterogeneous linear multi-agent systems with adaptive event-triggered control,” IEEE Trans. Automatic Control, vol. 64, no. 6, pp. 2606–2613, 2018.
|
[20] |
P. A. Ioannou and J. Sun, Robust Adaptive Control. Courier Corporation, 2012.
|
[21] |
G. Tao, Adaptive Control Design and Analysis. John Wiley & Sons, 2003, vol. 37.
|
[22] |
K. J. Åström and B. Wittenmark, Adaptive Control. Courier Corporation, 2013.
|
[23] |
P. Ioannou and B. Fidan, Adaptive Control Tutorial. SIAM, 2006.
|
[24] |
Z. Li and Z. Ding, “Distributed adaptive consensus and output tracking of unknown linear systems on directed graphs,” Automatica, vol. 55, pp. 12–18, 2015. doi: 10.1016/j.automatica.2015.02.033
|
[25] |
S. Baldi, S. Yuan, and P. Frasca, “Output synchronization of unknown heterogeneous agents via distributed model reference adaptation,” IEEE Trans. Control of Network Systems, vol. 6, no. 2, pp. 515–525, 2018.
|
[26] |
Z. Ding, “Distributed adaptive consensus output regulation of network-connected heterogeneous unknown linear systems on directed graphs,” IEEE Trans. Automatic Control, vol. 62, no. 9, pp. 4683–4690, 2016.
|
[27] |
M. H. Rezaei and M. B. Menhaj, “Adaptive output stationary average consensus for heterogeneous unknown linear multi-agent systems,” IET Control Theory &Applications, vol. 12, no. 7, pp. 847–856, 2018.
|
[28] |
Y. Zhang, Y. Su, and X. Wang, “Distributed adaptive output feedback control for multi-agent systems with unknown dynamics,” IEEE Trans. Automatic Control, vol. 66, no. 3, pp. 1367–1374, 2020.
|
[29] |
R. Yang, L. Liu, and G. Feng, “Cooperative output tracking of unknown heterogeneous linear systems by distributed event-triggered adaptive control,” IEEE Trans. Cybernetics, vol. 52, no. 1, pp. 3–15, 2022. doi: 10.1109/TCYB.2019.2962305
|
[30] |
S. Baldi, I. A. Azzollini, and P. A. Ioannou, “A distributed indirect adaptive approach to cooperative tracking in networks of uncertain single-input single-output systems,” IEEE Trans. Automatic Control, vol. 66, no. 10, pp. 4844–4851, 2021. doi: 10.1109/TAC.2020.3038742
|
[31] |
R. H. Middleton, G. C. Goodwin, D. J. Hill, and D. Q. Mayne, “Design issues in adaptive control,” IEEE Trans. Automatic Control, vol. 33, no. 1, pp. 50–58, 1988. doi: 10.1109/9.360
|
[32] |
G. Feng, “Analysis of a new algorithm for continuous-time robust adaptive control,” IEEE Trans. Automatic Control, vol. 44, no. 9, pp. 1764–1768, 1999. doi: 10.1109/9.788549
|
[33] |
G. C. Goodwin and D. Q. Mayne, “A parameter estimation perspective of continuous-time model reference adaptive control,” Automatica, vol. 23, no. 1, pp. 57–70, 1987. doi: 10.1016/0005-1098(87)90118-X
|
[34] |
C. Freeman, P. Lewin, and E. Rogers, “Experimental evaluation of iterative learning control algorithms for non-minimum phase plants,” Int. Journal of Control, vol. 78, no. 11, pp. 826–846, 2005. doi: 10.1080/00207170500158565
|
[35] |
Z. Feng and R. Allen, “Reduced order H ∞ control of an autonomous underwater vehicle,” Control Engineering Practice, vol. 12, no. 12, pp. 1511–1520, 2004. doi: 10.1016/j.conengprac.2004.02.004
|
[36] |
J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory. Courier Corporation, 2013.
|
[37] |
H. L. Royden and P. Fitzpatrick, Real Analysis. Macmillan New York, 1988, vol. 32.
|
[38] |
C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties. SIAM, 2009.
|
[39] |
P. A. Ioannou and A. Datta, “Robust adaptive control: A unified approach,” Proc. the IEEE, vol. 79, no. 12, pp. 1736–1768, 1991. doi: 10.1109/5.119551
|
[40] |
V. M. Popov, Hyperstability of Control Systems. Springer-Verlag, 1973.
|
[41] |
M. Vidyasagar, Nonlinear Systems Analysis. SIAM, 2002.
|
[42] |
S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness. Courier Corporation, 2011.
|