IEEE/CAA Journal of Automatica Sinica
Citation: | Z. X. Li, I. Korovin, X. L. Shi, S. Gorbachev, N. Gorbacheva, W. Huang, and J. D. Cao, “A data-driven rutting depth short-time prediction model with metaheuristic optimization for asphalt pavements based on RIOHTrack,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 1918–1932, Oct. 2023. doi: 10.1109/JAS.2023.123192 |
Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements’ rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from 19 asphalt pavements with different crude oil sources on a 2.038 km long full-scale field accelerated pavement test track (Road Track Institute, RIOHTrack) in Tongzhou, Beijing. In addition, this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction (RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of average root mean squared error (MSE), average mean absolute error (MAE), and average mean absolute percentage error (MAPE) for 19 asphalt pavements reaching 1.742, 1.363, and 1.94% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters. It is a promising alternative method that facilitates the rapid assessment of pavement conditions and could be applied in the future to production processes in the oil and gas industry.
[1] |
M. Gul, A. F. Guneri, and S. M. Nasirli, “A fuzzy-based model for risk assessment of routes in oil transportation,” Int. J. Environ. Sci. Technol., vol. 16, no. 8, pp. 4671–4686, Aug. 2019. doi: 10.1007/s13762-018-2078-z
|
[2] |
H. Mir, T. A. H. Ratlamwala, G. Hussain, M. Alkahtani, and M. H. Abidi, “Impact of sloshing on fossil fuel loss during transport,” Energies, vol. 13, no. 10, p. 2625, May 2020. doi: 10.3390/en13102625
|
[3] |
J. Zheng, S. Lv, and C. Liu, “Technical system, key scientific problems and technical frontier of long-life pavement,” Chin. Sci. Bull., vol. 65, no. 30, pp. 3219–3227, Oct. 2020. doi: 10.1360/TB-2020-0227
|
[4] |
H. Majidifard, B. Jahangiri, P. Rath, A. H. Alavi, and W. G. Buttlar, “A deep learning approach to predict Hamburg rutting curve,” Road Mater. Pavement Des., vol. 22, no. 9, pp. 2159–2180, Feb. 2021. doi: 10.1080/14680629.2021.1886160
|
[5] |
M. M. Rahman and S. L. Gassman, “Effect of resilient modulus of undisturbed subgrade soils on pavement rutting,” Int. J. Geotech. Eng., vol. 13, no. 2, pp. 152–161, 2019. doi: 10.1080/19386362.2017.1328773
|
[6] |
A. E. A. E. M. Behiry, “Fatigue and rutting lives in flexible pavement,” Ain Shams Eng. J., vol. 3, no. 4, pp. 367–374, Dec. 2012. doi: 10.1016/j.asej.2012.04.008
|
[7] |
S. Tayfur, H. Ozen, and A. Aksoy, “Investigation of rutting performance of asphalt mixtures containing polymer modifiers,” Constr. Build. Mater., vol. 21, no. 2, pp. 328–337, Feb. 2007. doi: 10.1016/j.conbuildmat.2005.08.014
|
[8] |
S. Khan, M. N. Nagabhushana, D. Tiwari, and P. K. Jain, “Rutting in flexible pavement: An approach of evaluation with accelerated pavement testing facility,” Procedia Soc. Behav. Sci., vol. 104, pp. 149–157, Dec. 2013. doi: 10.1016/j.sbspro.2013.11.107
|
[9] |
G. Polacco, S. Filippi, F. Merusi, and G. Stastna, “A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility,” Adv. Colloid Interface Sci., vol. 224, pp. 72–112, Oct. 2015. doi: 10.1016/j.cis.2015.07.010
|
[10] |
M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, and C. O. Rossi, “Bitumen and bitumen modification: A review on latest advances,” Appl. Sci., vol. 9, no. 4, p. 742, Feb. 2019. doi: 10.3390/app9040742
|
[11] |
X.-D. Wang, “Design of pavement structure and material for full-scale test track,” J. Highw. Transp. Res. Dev., vol. 34, no. 6, pp. 30–37, Jun. 2017.
|
[12] |
Q. Dong, X. Chen, S. Dong, and F. Ni, “Data analysis in pavement engineering: An overview,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 11, pp. 22020–22039, Nov. 2022. doi: 10.1109/TITS.2021.3115792
|
[13] |
X.-D. Wang, G.-L. Zhou, H.-Y. Liu, and X. Qing, “Key points of RIOHTRACK testing road design and construction,” J. Highw. Transp. Res. Dev., vol. 14, no. 4, pp. 1–16, Dec. 2020.
|
[14] |
W. Huang, S. M. Liang, and Y. Wei, “Surface deflection-based reliability analysis of asphalt pavement design,” Sci. China Technol. Sci., vol. 63, no. 9, pp. 1824–1836, Sept. 2020. doi: 10.1007/s11431-019-1480-8
|
[15] |
H. Liu, J. Cao, W. Huang, X. Shi, and X. Wang, “Complex network approach for the evaluation of asphalt pavement design and construction: A longitudinal study,” Sci. China Inf. Sci., vol. 65, no. 7, p. 172204, Jun. 2022. doi: 10.1007/s11432-021-3476-9
|
[16] |
G. Liu, L. Chen, Z. Qian, Y. Zhang, and H. Ren, “Rutting prediction models for asphalt pavements with different base types based on RIOHTrack full-scale track,” Constr. Build. Mater., vol. 305, p. 124793, Oct. 2021. doi: 10.1016/j.conbuildmat.2021.124793
|
[17] |
W. Zhang, X. Chen, S. Shen, L. N. Mohammad, B. Cui, S. Wu, and A. R. Khan, “Investigation of field rut depth of asphalt pavements using Hamburg wheel tracking test,” J. Transp. Eng. Part B: Pave., vol. 147, no. 1, p. 04020091, Mar. 2021. doi: 10.1061/JPEODX.0000250
|
[18] |
I. D. Uwanuakwa, S. I. A. Ali, M. R. M. Hasan, P. Akpinar, A. Sani, and K. A. Shariff, “Artificial intelligence prediction of rutting and fatigue parameters in modified asphalt binders,” Appl. Sci., vol. 10, no. 21, p. 7764, Oct. 2020. doi: 10.3390/app10217764
|
[19] |
M. Fang, C. Han, Y. Xiao, Z. Han, S. Wu, and M. Cheng, “Prediction modelling of rutting depth index for asphalt pavement using de-noising method,” Int. J. Pavement Eng., vol. 21, no. 7, pp. 895–907, 2020. doi: 10.1080/10298436.2018.1512712
|
[20] |
T. Dettenborn, A. Hartikainen, and L. Korkiala-Tanttu, “Pavement maintenance threshold detection and network-level rutting prediction model based on Finnish road data,” J. Infrastruct. Syst., vol. 26, no. 2, p. 04020016, Jun. 2020. doi: 10.1061/(ASCE)IS.1943-555X.0000539
|
[21] |
H. Gong, Y. Sun, Z. Mei, and B. Huang, “Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks,” Constr. Build. Mater., vol. 190, pp. 710–718, Nov. 2018. doi: 10.1016/j.conbuildmat.2018.09.087
|
[22] |
L. Yao, Q. Dong, J. Jiang, and F. Ni, “Establishment of prediction models of asphalt pavement performance based on a novel data calibration method and neural network,” Transp. Res. Rec.: J. Transp. Res. Board, vol. 2673, no. 1, pp. 66–82, Jan. 2019. doi: 10.1177/0361198118822501
|
[23] |
J. Tang, G. Liu, and Q. Pan, “A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1627–1643, Oct. 2021. doi: 10.1109/JAS.2021.1004129
|
[24] |
J. Wang and T. Kumbasar, “Parameter optimization of interval type-2 fuzzy neural networks based on PSO and BBBC methods,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 247–257, Jan. 2019. doi: 10.1109/JAS.2019.1911348
|
[25] |
C. Karat and R. Senthilkumar, “Optimal resource allocation with deep reinforcement learning and greedy adaptive firefly algorithm in cloud computing,” Concurrency Computat.: Pract. Exper., vol. 34, no. 4, p. e6657, Feb. 2022.
|
[26] |
H. Liu, J. Zhang, Q. Liu, and J. Cao, “Minimum spanning tree based graph neural network for emotion classification using EEG,” Neural Networks, vol. 145, pp. 308–318, Jan. 2022. doi: 10.1016/j.neunet.2021.10.023
|
[27] |
H. Liu, J. Cao, W. Huang, X. Shi, and X. Zhou, “A data-driven approach to the evaluation of asphalt pavement structures using falling weight deflectometer,” Discrete Cont. Dyn. Syst., vol. 15, no. 11, pp. 3223–3241, Sept. 2022. doi: 10.3934/dcdss.2022139
|
[28] |
L. Guo, X. Shi, and J. Cao, “Exponential convergence of primal-dual dynamical system for linear constrained optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 745–748, Apr. 2022. doi: 10.1109/JAS.2022.105485
|
[29] |
J. Islam, P. M. Vasant, B. M. Negash, M. B. Laruccia, M. Myint, and J. Watada, “A holistic review on artificial intelligence techniques for well placement optimization problem,” Adv. Eng. Softw., vol. 141, p. 102767, Mar. 2020. doi: 10.1016/j.advengsoft.2019.102767
|
[30] |
C. S. W. Ng, A. J. Ghahfarokhi, and M. N. Amar, “Well production forecast in volve field: Application of rigorous machine learning techniques and metaheuristic algorithm,” J. Pet. Sci. Eng., vol. 208, p. 109468, Jan. 2022. doi: 10.1016/j.petrol.2021.109468
|
[31] |
W. Qiao, H. Moayedi, and L. K. Foong, “Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption,” Energy Build., vol. 217, p. 110023, Jun. 2020. doi: 10.1016/j.enbuild.2020.110023
|
[32] |
S. O. E. Abdellatif, M. El-Yamany, H. A. Ghali, and W. R. Anis, “Optimizing a PV/diesel hybrid system in oil and gas industry using metaheuristic techniques,” Int. J. Renew. Energy Res., vol. 11, no. 2, pp. 647–653, Jun. 2021.
|
[33] |
X. Xu, Y. Gu, W. Huang, D. Chen, C. Zhang, and X. Yang, “Structural optimization of steel-epoxy asphalt pavement based on orthogonal design and GA-BP algorithm,” Crystals, vol. 11, no. 4, p. 417, Apr. 2021. doi: 10.3390/cryst11040417
|
[34] |
C. Liang, X. Xu, H. Chen, W. Wang, K. Zheng, G. Tan, Z. Gu, and H. Zhang, “Machine learning approach to develop a novel multi-objective optimization method for pavement material proportion,” Appl. Sci., vol. 11, no. 2, p. 835, Jan. 2021. doi: 10.3390/app11020835
|
[35] |
J.-L. Deng, “Control problems of grey systems,” Syst. Control Lett., vol. 1, no. 5, pp. 288–294, Mar. 1982. doi: 10.1016/S0167-6911(82)80025-X
|
[36] |
R. Vallee, “Grey information: Theory and practical applications,” Kybernetes, vol. 37, no. 1, p. 189, Feb. 2008. doi: 10.1108/03684920810851078
|
[37] |
Y. C. Hu, Y. J. Chiu, and J. F. Tsai, “Establishing grey criteria similarity measures for multi-criteria recommender systems,” J. Grey Syst., vol. 30, no. 1, pp. 194–201, 2018.
|
[38] |
P. Jiang, Y. C. Hu, G. F. Yen, and S. J. Tsao, “Green supplier selection for sustainable development of the automotive industry using grey decision-making,” Sustain. Dev., vol. 26, no. 6, pp. 890–903, Nov.–Dec. 2018. doi: 10.1002/sd.1860
|
[39] |
V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in large networks,” J. Stat. Mech.: Theory Exp., vol. 2008, p. P10008, Oct. 2008. doi: 10.1088/1742-5468/2008/10/P10008
|
[40] |
G.-B. Huang, Q.-Y. Zhu, and C. K. Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks,” in Proc. IEEE Int. Joint Conf. Neural Networks, Budapest, Hungary, 2004, pp. 985–990.
|
[41] |
G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006. doi: 10.1016/j.neucom.2005.12.126
|
[42] |
J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. ICNN’95-Int. Conf. Neural Networks, Perth, Australia, pp. 1942–1948.
|
[43] |
Eberhart and Y. Shi, “Particle swarm optimization: Developments, applications and resources,” in Proc. Congr. Evolutionary Computation, Seoul, Korea, 2001, pp. 81–86.
|
[44] |
W. S. Cleveland and S. J. Devlin, “Locally weighted regression: An approach to regression analysis by local fitting,” J. Am. Stat. Assoc., vol. 83, no. 403, pp. 596–610, Sept. 1988. doi: 10.1080/01621459.1988.10478639
|
[45] |
M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” in Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining, Portland, Oregon, 1996, pp. 226–231.
|
[46] |
J. B. MacQueen, “Classification and analysis of multivariate observations,” in Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, Berkeley, USA, 1967, pp. 281–297.
|
[47] |
C. M. Bishop, Pattern Recognition and Machine Learning. New York, USA: Springer, 2006.
|
[48] |
M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, “OPTICS: Ordering points to identify the clustering structure,” ACM SIGMOD Rec., vol. 28, no. 2, pp. 49–60, Jun. 1999. doi: 10.1145/304181.304187
|
[49] |
K. Wang, B. Wang, and L. Peng, “CVAP: Validation for cluster analyses,” Data Sci. J., vol. 8, pp. 88–93, May 2009. doi: 10.2481/dsj.007-020
|
[50] |
A. Iosifidis, A. Tefas, and I. Pitas, “On the kernel extreme learning machine classifier,” Pattern Recognit. Lett., vol. 54, pp. 11–17, Mar. 2015. doi: 10.1016/j.patrec.2014.12.003
|
[51] |
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735
|
[52] |
H. K. Ghritlahre and R. K. Prasad, “Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique,” J. Environ. Manage., vol. 223, pp. 566–575, Oct. 2018. doi: 10.1016/j.jenvman.2018.06.033
|
[53] |
K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for statistical machine translation,” in Proc. Conf. Empirical Methods in Natural Language Processing, Doha, Qatar, 2014, pp. 1724–1734.
|
[54] |
I. T. Young, “Proof without prejudice: Use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources,” J. Histochem. Cytochem., vol. 25, no. 7, pp. 935–941, Jul. 1977. doi: 10.1177/25.7.894009
|
[55] |
Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proc. Congr. Evolutionary Computation-CEC99, Washington, USA, pp. 1945–1950.
|
[56] |
Z. X. Li, X. L. Shi, J. D. Cao, X. D. Wang, and W. Huang, “CPSO-XGBoost segmented regression model for asphalt pavement deflection basin area prediction,” Sci. China Technol. Sci., vol. 65, no. 7, pp. 1470–1481, Jun. 2022. doi: 10.1007/s11431-021-1972-7
|
[57] |
D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85, Jun. 1994.
|
[58] |
J. Wang, L. Li, D. Niu, and Z. Tan, “An annual load forecasting model based on support vector regression with differential evolution algorithm,” Appl. Energy, vol. 94, pp. 65–70, Jun. 2012. doi: 10.1016/j.apenergy.2012.01.010
|
[59] |
S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016. doi: 10.1016/j.advengsoft.2016.01.008
|
[60] |
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, USA, 2016, pp. 785–794.
|
[61] |
A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3, pp. 199–222, Aug. 2004. doi: 10.1023/B:STCO.0000035301.49549.88
|
[62] |
Q. Yang and Y. Deng, “Evaluation of cracking in asphalt pavement with stabilized base course based on statistical pattern recognition,” Int. J. Pavement Eng., vol. 20, no. 4, pp. 417–424, Apr. 2019. doi: 10.1080/10298436.2017.1299528
|
[63] |
P. F. Smith, S. Ganesh, and P. Liu, “A comparison of random forest regression and multiple linear regression for prediction in neuroscience,” J. Neurosci. Methods, vol. 220, no. 1, pp. 85–91, Oct. 2013. doi: 10.1016/j.jneumeth.2013.08.024
|
[64] |
S. Kurt, E. Öz, Ö. E. Aškın, and Y. Y. Öz, “Classification of nucleotide sequences for quality assessment using logistic regression and decision tree approaches,” Neural Comput. Appl., vol. 29, no. 8, pp. 251–262, Apr. 2018. doi: 10.1007/s00521-017-2960-5
|
[65] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.
|