IEEE/CAA Journal of Automatica Sinica
Citation: | E. G. Tian, Y. Zou, and H. T. Chen, “Finite-time synchronization of complex networks with intermittent couplings and neutral-type delays,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 10, pp. 2026–2028, Oct. 2023. doi: 10.1109/JAS.2023.123171 |
[1] |
C. Hu, H. He, and H. Jiang, “Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: A direct error method,” Automatica, vol. 112, p. 108675, 2020. doi: 10.1016/j.automatica.2019.108675
|
[2] |
G. Wen, Z. Duan, W. Ren, et al., “Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications,” Int. J. Robust Nonlin. Control, vol. 24, no. 16, pp. 2438–2457, 2014. doi: 10.1002/rnc.3001
|
[3] |
Y. Liu and H. Su, “Containment control of second-order multi-agent systems via intermittent sampled position data communication,” Appl. Math. Comput., vol. 362, p. 124522, 2019.
|
[4] |
D. Efimov, A. Polyakov, E. Fridman, et al., “Comments on finite-time stability of time-delay systems,” Automatica, vol. 50, no. 7, pp. 1944–1947, 2014. doi: 10.1016/j.automatica.2014.05.010
|
[5] |
X. Yang, “Can neural networks with arbitrary delays be finite-timely synchronized?” Neurocomputing, vol. 143, pp. 275–281, 2014. doi: 10.1016/j.neucom.2014.05.064
|
[6] |
Y. Zou, H. Su, R. Tang, et al., “Finite-time bipartite synchronization of switched competitive neural networks with time delay via quantized control,” ISA Trans., vol. 125, pp. 156–165, 2022. doi: 10.1016/j.isatra.2021.06.015
|
[7] |
R. Tang, H. Su, Y. Zou, et al., “Finite-time synchronization of markovian coupled neural networks with delays via intermittent quantized control: Linear programming approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 10, pp. 5268–5278, 2022. doi: 10.1109/TNNLS.2021.3069926,2021
|
[8] |
J. He, Y. Lin, M. Ge, et al., “Adaptive finite-time cluster synchronization of neutral-type coupled neural networks with mixed delays,” Neurocomputing, vol. 384, pp. 11–20, 2020. doi: 10.1016/j.neucom.2019.11.046
|
[9] |
Z. Zhou, Z. Zhang, and M. Chen, “Finite-time synchronization for fuzzy delayed neutral-type inertial bam neural networks via the figure analysis approach,” Int. J. Fuzzy Syst., pp. 1–18, 2021.
|
[10] |
X. Yang, G. Feng, C. He, et al., “Event-triggered dynamic output quantization control of switched ts fuzzy systems with unstable modes,” IEEE Trans. Fuzzy Syst., vol. 30, no. 10, pp. 4201–4210, 2022. doi: 10.1109/TFUZZ.2022.3145808,2022
|
[11] |
X. Guo, D. Zhang, J. Wang, et al., “Adaptive memory event-triggered observer-based control for nonlinear multi-agent systems under DoS attacks,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1644–1656, 2021. doi: 10.1109/JAS.2021.1004132
|
[12] |
J. Hu, C. Jia, H. Yu, et al., “Dynamic event-triggered state estimation for nonlinear coupled output complex networks subject to innovation constraints,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 941–9446, 2022. doi: 10.1109/JAS.2022.105581
|
[13] |
A. Girard, “Dynamic triggering mechanisms for event-triggered control,” IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997, 2014.
|
[14] |
J. Liu, Y. Wu, M. Sun, et al., “Fixed-time cooperative tracking for delayed disturbed multi-agent systems under dynamic event-triggered control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 930–933, 2022. doi: 10.1109/JAS.2022.105503
|
[15] |
J. Liu, G. Ran, Y. Huang, et al., “Adaptive event-triggered finite-time dissipative filtering for interval type-2 fuzzy Markov jump systems with asynchronous modes,” IEEE Trans. Cybern., 2021. DOI: 10.1109/TCYB.2021.3053627
|
[16] |
Z. Fei, S. Shi, C. K. Ahn, et al., “Finite-time control for switched T-S fuzzy systems via a dynamic event-triggered mechanism,” IEEE Trans. Fuzzy Syst., vol. 29, no. 12, pp. 3899–3909, 2020.
|