A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Y. Zheng, M. Q. Liu, S. L. Zhang, and J. Lan, “A novel sensor scheduling algorithm based on deep reinforcement learning for bearing-only target tracking in UWSNs,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1077–1079, Apr. 2023. doi: 10.1109/JAS.2023.123159
Citation: L. Y. Zheng, M. Q. Liu, S. L. Zhang, and J. Lan, “A novel sensor scheduling algorithm based on deep reinforcement learning for bearing-only target tracking in UWSNs,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1077–1079, Apr. 2023. doi: 10.1109/JAS.2023.123159

A Novel Sensor Scheduling Algorithm Based on Deep Reinforcement Learning for Bearing-Only Target Tracking in UWSNs

doi: 10.1109/JAS.2023.123159
More Information
  • loading
  • [1]
    J. Luo, H. Ying, and L. Fan, “Underwater acoustic target tracking: A review,” Sensors, vol. 18, no. 1, p. 112, 2018. doi: 10.3390/s18010112
    [2]
    C. H. Yu, J. C. Lee, J. W. Choi, M.-K. Park, and D. J. Kang, “Energy efficient distributed interacting multiple model filter in UWSNs,” in Proc. 12th Int. Conf. Control, Automation and Syst., 2012, pp. 1093–1098.
    [3]
    S. Zhang, H. Chen, and M. Liu, “Adaptive sensor scheduling for target tracking in underwater wireless sensor networks,” in Proc. Int. Conf. Mechatronics Control, 2014, pp. 55–60.
    [4]
    X. Han, M. Liu, S. Zhang, and Q. Zhang, “A multi-node cooperative bearing-only target passive tracking algorithm via UWSNs,” IEEE Sensors J., vol. 19, no. 22, pp. 10609–10623, 2019.
    [5]
    A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: A tutorial,” IEEE Commu. Surveys & Tutorials, vol. 23, no. 2, pp. 1226–1252, 2021
    [6]
    R. Su, Z. Gong, D. Zhang, C. Li, Y. Chen, and R. Venkatesan, “An adaptive asynchronous wake-up scheme for underwater acoustic sensor networks using deep reinforcement learning,” IEEE Trans. Vehicular Technology, vol. 70, no. 2, pp. 1851–1865, 2021.
    [7]
    X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part I. Dynamic models,” IEEE Trans. Aerospace and Electronic Syst., vol. 39, no. 4, pp. 1333–1364, 2003.
    [8]
    X. Leong, A. S. Ramaswamy, A. Quevedo, and D. E. Karl, “Deep reinforcement learning for wireless sensor scheduling in cyber–physical systems,” Automatica, vol. 113, p. 108759, 2020.
    [9]
    W. Cao, J. Lan, and X. R. Li, “Joint tracking and classification based on recursive joint decision and estimation using multi-sensor data,” in Proc. 17th Intern. Conf. Information Fusion, 2014, pp. 1–8.
    [10]
    H. Song, Y. Liu, J. Zhao, J. Liu, and G. Wu, “Prioritized replay dueling DDQN based grid-edge control of community energy storage system,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 4950–4961, 2021.
    [11]
    W. Lee and H. Y. Kim, “Genetic algorithm implementation in python,” in Proc. 4th Annual ACIS International Conf. Computer and Infor. Science, 2005, pp. 8–11.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (465) PDF downloads(104) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return