A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. W. Li and Y. M. Li, “Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1083–1085, Apr. 2023. doi: 10.1109/JAS.2023.123153
Citation: K. W. Li and Y. M. Li, “Adaptive predefined-time optimal tracking control for underactuated autonomous underwater vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1083–1085, Apr. 2023. doi: 10.1109/JAS.2023.123153

Adaptive Predefined-Time Optimal Tracking Control for Underactuated Autonomous Underwater Vehicles

doi: 10.1109/JAS.2023.123153
More Information
  • loading
  • [1]
    R. X. Cui, S. S. Ge, B. V. E. How, and Y. S. Choo, “Leader-follower formation control of underactuated autonomous underwater vehicles,” Ocean Engineering, vol. 37, no. 17−18, pp. 1491–1502, 2010. doi: 10.1016/j.oceaneng.2010.07.006
    [2]
    J. Li, J. L. Du, Y. Q. Sun, and F. L. Lewis, “Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance,” Int. J. Robust and Nonlinear Control, vol. 29, no. 14, pp. 4629–4643, 2019. doi: 10.1002/rnc.4659
    [3]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, 2011.
    [4]
    K. W. Li, Y. M. Li, and G. D. Zong, “Adaptive fuzzy fixed-time decentralized control for stochastic nonlinear systems,” IEEE Trans. Fuzzy Systems, vol. 29, no. 11, pp. 3428–3440, 2020.
    [5]
    C. F. Huang, X. K. Zhang, G. Q. Zhang, and Y. J. Deng, “Robust practical fixed-time leader-follower formation control for underactuated autonomous surface vessels using event-triggered mechanism,” Ocean Engineering, vol. 233, p. 109026, 2021. doi: 10.1016/j.oceaneng.2021.109026
    [6]
    A. J. Munoz-Vazquez, J. D. Sanchez-Torres, E. Jimenez-Rodriguez, and A. G. Loukianov, “Predefined-time robust stabilization of robotic manipulators,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 3, pp. 1033–1040, 2019. doi: 10.1109/TMECH.2019.2906289
    [7]
    S. Z. Xie and Q. Chen, “Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts,” IEEE Trans. Circuits and Systems Ⅱ: Express Briefs, vol. 69, no. 1, pp. 189–193, 2022. doi: 10.1109/TCSII.2021.3078708
    [8]
    R. E. Bellman, Dynamic Programming. Princeton, USA: Princeton University Press, 1957.
    [9]
    P. J. Werbos, “A menu of designs for reinforcement learning over time”, in Neural Networks for Control, vol. 3, Cambridge, USA: MIT press, 1990, pp. 67−95.
    [10]
    M. Mazouchi, M. B. Naghibi-Sistani, and S. K. H. Sani, “A novel distributed optimal adaptive control algorithm for nonlinear multi-agent differential graphical games,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 331–341, 2018. doi: 10.1109/JAS.2017.7510784
    [11]
    G. X. Wen, C. L. Philip Chen, and W. N. Li, “Simplified optimized control using reinforcement learning algorithm for a class of stochastic nonlinear systems,” Information Sciences, vol. 517, pp. 230–243, 2020. doi: 10.1016/j.ins.2019.12.039
    [12]
    Y. G. Yang, L. F. Liao, H. Yang, and S. Li, “An optimal control strategy for multi-UAVs target tracking and cooperative competition,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1931–1947, 2020.
    [13]
    Y. M. Li, Y. J. Liu, and S. C. Tong, “Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints,” IEEE Trans. Neural Networks Learning Systems, vol. 33, no. 7, pp. 3131–3145, 2022. doi: 10.1109/TNNLS.2021.3051030
    [14]
    S. J. Cao, L. Sun, J. J. Jiang, and Z. Y. Zuo, “Reinforcement learning-based fixed-time trajectory tracking control for uncertain robotic manipulators with input saturation”, IEEE Trans. Neural Networks Learning Systems, DOI: 10.1109/TNNLS.2021.3116713.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (489) PDF downloads(123) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return