A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
B. Zhang, C. X. Dou, D. Yue, J. H. Park, Y. D. Zhang, and Z. Q. Zhang, “Game and dynamic communication path-based pricing strategies for microgrids under communication interruption,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1032–1047, Apr. 2023. doi: 10.1109/JAS.2023.123138
Citation: B. Zhang, C. X. Dou, D. Yue, J. H. Park, Y. D. Zhang, and Z. Q. Zhang, “Game and dynamic communication path-based pricing strategies for microgrids under communication interruption,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1032–1047, Apr. 2023. doi: 10.1109/JAS.2023.123138

Game and Dynamic Communication Path-Based Pricing Strategies for Microgrids Under Communication Interruption

doi: 10.1109/JAS.2023.123138
Funds:  This work was supported in part by the National Key Research and Development Program of China (2018YFA0702200), the National Natural Science Foundation of China (61933005, 61833008), the Natural Science Foundation of Jiangsu Province of China (BK20220395), the Leading Technology Foundation Research Project of Jiangsu Province (BK20202011), the Natural Science Foundation of Jiangsu Universities (22KJB470024), Jiangsu Provincial Key Research and Development Program (BE2020001), Natural Science Foundation of Hebei Province of China (E2020203139), Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY222032), and the National Research Foundation of Korea (2020R1A2B5B02002002)
More Information
  • Nowadays, the microgrid cluster is an important application scenario for energy trading. In trading, one of the most important research directions is the issue of pricing. To determine reasonable pricing for the microgrid cluster, data communication is used to create the cyber-physical system (CPS), which can improve the observability of microgrids. Then, the following works are carried out in the CPS. In the physical layer: 1) Regarding trading between microgrids and the load, based on the generalized game theory, an optimal pricing strategy is proposed, which takes into account the interactive relationships among microgrids and transforms the pricing problem into a Nikaido-Isoda function to obtain the optimal prices conveniently; 2) Regarding peer-to-peer trading between two microgrids, based on evolutionary game theory and the penalty mechanism, the optimal sale price of the seller is selected with boundary rationality. In the cyber layer, regarding the communication interruption issue existing in pricing (i.e., the game process), based on the principle of matching the performance of the path with the importance degree of the data, a dynamic regulating method of paths is proposed, i.e., adopting a new path to re-transmit the interrupted data to the destination. Finally, the effect of the proposed strategies is verified by case studies.


  • loading
  • [1]
    L. L. Xiong, Y. Tang, S. Mao, H. Y. Liu, K. Meng, Z. Y. Dong, and F. Qian, “A two-level energy management strategy for multi-microgrid systems with interval prediction and reinforcement learning,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 69, no. 4, pp. 1788–1799, Apr. 2022. doi: 10.1109/TCSI.2022.3141229
    L. Ding, Q. L. Han, and X. M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an event-triggered communication mechanism,” IEEE Trans. Ind. Inf., vol. 15, no. 7, pp. 3910–3922, Jul. 2019. doi: 10.1109/TII.2018.2884494
    Q. Y. Sun, L. Liu, D. Z. Ma, and H. G. Zhang, “The initial guess estimation Newton method for power flow in distribution systems,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 231–242, Apr. 2017. doi: 10.1109/JAS.2017.7510514
    B. N. Huang, Y. S. Li, H. G. Zhang, and Q. Y. Sun, “Distributed optimal co-multi-microgrids energy management for energy internet,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 357–364, Oct. 2016. doi: 10.1109/JAS.2016.7510073
    Y. N. Wan, J. H. Qin, X. H. Yu, T. Yang, and Y. Kang, “Price-based residential demand response management in smart grids: A reinforcement learning-based approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 123–134, Jan. 2022. doi: 10.1109/JAS.2021.1004287
    C. Peng, H. T. Sun, M. J. Yang, and Y. L. Wang, “A survey on security communication and control for smart grids under malicious cyber attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 8, pp. 1554–1569, Aug. 2019. doi: 10.1109/TSMC.2018.2884952
    D. F. Zhu, B. Yang, Q. Liu, K. Ma, S. Y. Zhu, C. B. Ma, and X. P. Guan, “Energy trading in microgrids for synergies among electricity, hydrogen and heat networks,” Appl. Energy, vol. 272, p. 115225, Aug. 2020. doi: 10.1016/j.apenergy.2020.115225
    M. Zhou, Z. Y. Wu, J. X. Wang, and G. Y. Li, “Forming dispatchable region of electric vehicle aggregation in microgrid bidding,” IEEE Trans. Ind. Inf., vol. 17, no. 7, pp. 4755–4765, Jul. 2021. doi: 10.1109/TII.2020.3020166
    W. Pei, Y. Du, W. Deng, K. Sheng, H. Xiao, and H. Qu, “Optimal bidding strategy and intramarket mechanism of microgrid aggregator in real-time balancing market,” IEEE Trans. Ind. Inf., vol. 12, no. 2, pp. 587–596, Apr. 2016. doi: 10.1109/TII.2016.2522641
    N. Rezaei, A. Ahmadi, A. Khazali, and J. Aghaei, “Multiobjective risk-constrained optimal bidding strategy of smart microgrids: An IGDT-based normal boundary intersection approach,” IEEE Trans. Ind. Inf., vol. 15, no. 3, pp. 1532–1543, Mar. 2019. doi: 10.1109/TII.2018.2850533
    L. Ali, S. M. Muyeen, H. Bizhani, and A. Ghosh, “Optimal planning of clustered microgrid using a technique of cooperative game theory,” Electric Power Syst. Res., vol. 183, p. 106262, Jun. 2020. doi: 10.1016/j.jpgr.2020.106262
    Y. M. Dai, Y. Gao, H. W. Gao, and H. B. Zhu, “Real-time pricing scheme based on Stackelberg game in smart grid with multiple power retailers,” Neurocomputing, vol. 260, pp. 149–156, Oct. 2017. doi: 10.1016/j.neucom.2017.04.027
    W. Tushar, B. Chai, C. Yuen, D. B. Smith, K. L. Wood, Z. Y. Yang, and H. V. Poor, “Three-party energy management with distributed energy resources in smart grid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2487–2498, Apr. 2015. doi: 10.1109/TIE.2014.2341556
    G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou, “Leader-follower strategies for energy management of multi-microgrids,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1909–1916, Dec. 2013. doi: 10.1109/TSG.2013.2256941
    J. Lee, J. Guo, J. K. Choi, and M. Zukerman, “Distributed energy trading in microgrids: A game-theoretic model and its equilibrium analysis,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3524–3533, Jun. 2015. doi: 10.1109/TIE.2014.2387340
    M. Javadi, M. Marzband, M. F. Akorede, R. Godina, A. S. Al-Sumaiti, and E. Pouresmaeil, “A centralized smart decision-making hierarchical interactive architecture for multiple home microgrids in retail electricity market,” Energies, vol. 11, no. 11, p. 3144, Nov. 2018. doi: 10.3390/en11113144
    A. M. Jadhav, N. R. Patne, and J. M. Guerrero, “A novel approach to neighborhood fair energy trading in a distribution network of multiple microgrid clusters,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1520–1531, Feb. 2019. doi: 10.1109/TIE.2018.2815945
    A. Paudel, K. Chaudhari, C. Long, and H. B. Gooi, “Peer-to-peer energy trading in a prosumer-based community microgrid: A game-theoretic model,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6087–6097, Aug. 2019. doi: 10.1109/TIE.2018.2874578
    M. H. K. Tushar and C. Assi, “Optimal energy management and marginal-cost electricity pricing in microgrid network,” IEEE Trans. Ind. Inf., vol. 13, no. 6, pp. 3286–3298, Dec. 2017. doi: 10.1109/TII.2017.2712652
    N. C. Luong, P. Wang, D. Niyato, Y. C. Liang, Z. Han, and F. Hou, “Applications of economic and pricing models for resource management in 5G wireless networks: A survey,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3298–3339, 2019. doi: 10.1109/COMST.2018.2870996
    K. Thirugnanam, M. S. E. Moursi, V. Khadkikar, H. H. Zeineldin, and M. Al Hosani, “Energy management of grid interconnected multi-microgrids based on P2P energy exchange: A data driven approach,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1546–1562, Mar. 2021. doi: 10.1109/TPWRS.2020.3025113
    K. Jhala, B. Natarajan, A. Pahwa, and H. Y. Wu, “Stability of transactive energy market-based power distribution system under data integrity attack,” IEEE Trans. Ind. Inf., vol. 15, no. 10, pp. 5541–5550, Oct. 2019. doi: 10.1109/TII.2019.2901768
    C. Barreto and A. A. Cárdenas, “Impact of the market infrastructure on the security of smart grids,” IEEE Trans. Ind. Inf., vol. 15, no. 7, pp. 4342–4351, Jul. 2019. doi: 10.1109/TII.2018.2886292
    R. H. Jhaveri, S. V. Ramani, G. Srivastava, T. R. Gadekallu, and V. Aggarwal, “Fault-resilience for bandwidth management in industrial software-defined networks,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 4, pp. 3129–3139, Oct.–Dec. 2021. doi: 10.1109/TNSE.2021.3104499
    K. H. Lu and Q. X. Zhu, “Nonsmooth continuous-time distributed algorithms for seeking generalized Nash equilibria of noncooperative games via digraphs,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6196–6206, Jul. 2022. doi: 10.1109/TCYB.2021.3049463
    K. Ma, C. S. Wang, J. Yang, C. C. Hua, and X. P. Guan, “Pricing mechanism with noncooperative game and revenue sharing contract in electricity market,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 97–106, Jan. 2019. doi: 10.1109/TCYB.2017.2766171
    L. H. Wang, Y. M. Zhang, W. Song, and Q. Q. Li, “Stochastic cooperative bidding strategy for multiple microgrids with peer-to-peer energy trading,” IEEE Trans. Ind. Inf., vol. 18, no. 3, pp. 1447–1457, Mar. 2022. doi: 10.1109/TII.2021.3094274
    M. E. Khodayar and M. Shahidehpour, “Optimal strategies for multiple participants in electricity markets,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 986–987, Mar. 2014. doi: 10.1109/TPWRS.2013.2288020
    R. A. Jabr, “Mixed-integer convex optimization for DC microgrid droop control,” IEEE Trans. Power Syst., vol. 36, no. 6, pp. 5901–5908, Nov. 2021. doi: 10.1109/TPWRS.2021.3083678
    B. B. Wang, Z. Han, and K. J. R. Liu, “Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game,” IEEE Trans. Mobile Comput., vol. 8, no. 7, pp. 975–990, Jul. 2009. doi: 10.1109/TMC.2008.153
    M. Löschenbrand and M. Korpås, “Multiple Nash equilibria in electricity markets with price-making hydrothermal producers,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 422–431, Jan. 2019. doi: 10.1109/TPWRS.2018.2858574
    H. A. Nguyen, H. Guo, and K. S. Low, “Real-time estimation of sensor node’s position using particle swarm optimization with log-barrier constraint,” IEEE Trans. Instrum. Meas., vol. 60, no. 11, pp. 3619–3628, Nov. 2011. doi: 10.1109/TIM.2011.2135030
    Z. J. Liu, X. Zhang, M. Su, Y. Sun, H. Han, and P. Wang, “Convergence analysis of Newton-Raphson method in feasible power-flow for DC network,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4100–4103, Sept. 2020. doi: 10.1109/TPWRS.2020.2986706
    X. Y. Cao and K. J. R. Liu, “Distributed Newton’s method for network cost minimization,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1278–1285, Mar. 2021. doi: 10.1109/TAC.2020.2989266
    X. Zhao, Y. Bai, L. L. Ding, and L. Wang, “Tripartite evolutionary game theory approach for low-carbon power grid technology cooperation with government intervention,” IEEE Access, vol. 8, pp. 47357–47369, Feb. 2020. doi: 10.1109/ACCESS.2020.2974666
    L. F. Cheng and T. Yu, “Nash equilibrium-based asymptotic stability analysis of multi-group asymmetric evolutionary games in typical scenario of electricity market,” IEEE Access, vol. 6, pp. 32064–32086, May 2018. doi: 10.1109/ACCESS.2018.2842469
    K. Hein, Y. Xu, G. Wilson, and A. K. Gupta, “Coordinated optimal voyage planning and energy management of all-electric ship with hybrid energy storage system,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2355–2365, May 2021. doi: 10.1109/TPWRS.2020.3029331
    B. Long, T. X. Cao, W. T. Fang, K. T. Chong, and J. M. Guerrero, “Model predictive control of a three-phase two-level four-leg grid-connected converter based on sphere decoding method,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2283–2297, Feb. 2021. doi: 10.1109/TPEL.2020.3006432


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(9)

    Article Metrics

    Article views (320) PDF downloads(44) Cited by()


    • The pricing problem in microgrid trading is modeled as related game models to solve
    • The generalized game model is used to design sale prices for MGs in MGC trading
    • The evolutionary game model is used to design sale prices for MGs in P2P trading
    • The communication interruption is solved by dynamic regulating communication paths


    DownLoad:  Full-Size Img  PowerPoint