IEEE/CAA Journal of Automatica Sinica
Citation:  B. Zhang, C. X. Dou, D. Yue, J. H. Park, Y. D. Zhang, and Z. Q. Zhang, “Game and dynamic communication pathbased pricing strategies for microgrids under communication interruption,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1032–1047, Apr. 2023. doi: 10.1109/JAS.2023.123138 
[1] 
L. L. Xiong, Y. Tang, S. Mao, H. Y. Liu, K. Meng, Z. Y. Dong, and F. Qian, “A twolevel energy management strategy for multimicrogrid systems with interval prediction and reinforcement learning,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 69, no. 4, pp. 1788–1799, Apr. 2022. doi: 10.1109/TCSI.2022.3141229

[2] 
L. Ding, Q. L. Han, and X. M. Zhang, “Distributed secondary control for active power sharing and frequency regulation in islanded microgrids using an eventtriggered communication mechanism,” IEEE Trans. Ind. Inf., vol. 15, no. 7, pp. 3910–3922, Jul. 2019. doi: 10.1109/TII.2018.2884494

[3] 
Q. Y. Sun, L. Liu, D. Z. Ma, and H. G. Zhang, “The initial guess estimation Newton method for power flow in distribution systems,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 231–242, Apr. 2017. doi: 10.1109/JAS.2017.7510514

[4] 
B. N. Huang, Y. S. Li, H. G. Zhang, and Q. Y. Sun, “Distributed optimal comultimicrogrids energy management for energy internet,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 357–364, Oct. 2016. doi: 10.1109/JAS.2016.7510073

[5] 
Y. N. Wan, J. H. Qin, X. H. Yu, T. Yang, and Y. Kang, “Pricebased residential demand response management in smart grids: A reinforcement learningbased approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 123–134, Jan. 2022. doi: 10.1109/JAS.2021.1004287

[6] 
C. Peng, H. T. Sun, M. J. Yang, and Y. L. Wang, “A survey on security communication and control for smart grids under malicious cyber attacks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 49, no. 8, pp. 1554–1569, Aug. 2019. doi: 10.1109/TSMC.2018.2884952

[7] 
D. F. Zhu, B. Yang, Q. Liu, K. Ma, S. Y. Zhu, C. B. Ma, and X. P. Guan, “Energy trading in microgrids for synergies among electricity, hydrogen and heat networks,” Appl. Energy, vol. 272, p. 115225, Aug. 2020. doi: 10.1016/j.apenergy.2020.115225

[8] 
M. Zhou, Z. Y. Wu, J. X. Wang, and G. Y. Li, “Forming dispatchable region of electric vehicle aggregation in microgrid bidding,” IEEE Trans. Ind. Inf., vol. 17, no. 7, pp. 4755–4765, Jul. 2021. doi: 10.1109/TII.2020.3020166

[9] 
W. Pei, Y. Du, W. Deng, K. Sheng, H. Xiao, and H. Qu, “Optimal bidding strategy and intramarket mechanism of microgrid aggregator in realtime balancing market,” IEEE Trans. Ind. Inf., vol. 12, no. 2, pp. 587–596, Apr. 2016. doi: 10.1109/TII.2016.2522641

[10] 
N. Rezaei, A. Ahmadi, A. Khazali, and J. Aghaei, “Multiobjective riskconstrained optimal bidding strategy of smart microgrids: An IGDTbased normal boundary intersection approach,” IEEE Trans. Ind. Inf., vol. 15, no. 3, pp. 1532–1543, Mar. 2019. doi: 10.1109/TII.2018.2850533

[11] 
L. Ali, S. M. Muyeen, H. Bizhani, and A. Ghosh, “Optimal planning of clustered microgrid using a technique of cooperative game theory,” Electric Power Syst. Res., vol. 183, p. 106262, Jun. 2020. doi: 10.1016/j.jpgr.2020.106262

[12] 
Y. M. Dai, Y. Gao, H. W. Gao, and H. B. Zhu, “Realtime pricing scheme based on Stackelberg game in smart grid with multiple power retailers,” Neurocomputing, vol. 260, pp. 149–156, Oct. 2017. doi: 10.1016/j.neucom.2017.04.027

[13] 
W. Tushar, B. Chai, C. Yuen, D. B. Smith, K. L. Wood, Z. Y. Yang, and H. V. Poor, “Threeparty energy management with distributed energy resources in smart grid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2487–2498, Apr. 2015. doi: 10.1109/TIE.2014.2341556

[14] 
G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou, “Leaderfollower strategies for energy management of multimicrogrids,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1909–1916, Dec. 2013. doi: 10.1109/TSG.2013.2256941

[15] 
J. Lee, J. Guo, J. K. Choi, and M. Zukerman, “Distributed energy trading in microgrids: A gametheoretic model and its equilibrium analysis,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3524–3533, Jun. 2015. doi: 10.1109/TIE.2014.2387340

[16] 
M. Javadi, M. Marzband, M. F. Akorede, R. Godina, A. S. AlSumaiti, and E. Pouresmaeil, “A centralized smart decisionmaking hierarchical interactive architecture for multiple home microgrids in retail electricity market,” Energies, vol. 11, no. 11, p. 3144, Nov. 2018. doi: 10.3390/en11113144

[17] 
A. M. Jadhav, N. R. Patne, and J. M. Guerrero, “A novel approach to neighborhood fair energy trading in a distribution network of multiple microgrid clusters,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1520–1531, Feb. 2019. doi: 10.1109/TIE.2018.2815945

[18] 
A. Paudel, K. Chaudhari, C. Long, and H. B. Gooi, “Peertopeer energy trading in a prosumerbased community microgrid: A gametheoretic model,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6087–6097, Aug. 2019. doi: 10.1109/TIE.2018.2874578

[19] 
M. H. K. Tushar and C. Assi, “Optimal energy management and marginalcost electricity pricing in microgrid network,” IEEE Trans. Ind. Inf., vol. 13, no. 6, pp. 3286–3298, Dec. 2017. doi: 10.1109/TII.2017.2712652

[20] 
N. C. Luong, P. Wang, D. Niyato, Y. C. Liang, Z. Han, and F. Hou, “Applications of economic and pricing models for resource management in 5G wireless networks: A survey,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3298–3339, 2019. doi: 10.1109/COMST.2018.2870996

[21] 
K. Thirugnanam, M. S. E. Moursi, V. Khadkikar, H. H. Zeineldin, and M. Al Hosani, “Energy management of grid interconnected multimicrogrids based on P2P energy exchange: A data driven approach,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1546–1562, Mar. 2021. doi: 10.1109/TPWRS.2020.3025113

[22] 
K. Jhala, B. Natarajan, A. Pahwa, and H. Y. Wu, “Stability of transactive energy marketbased power distribution system under data integrity attack,” IEEE Trans. Ind. Inf., vol. 15, no. 10, pp. 5541–5550, Oct. 2019. doi: 10.1109/TII.2019.2901768

[23] 
C. Barreto and A. A. Cárdenas, “Impact of the market infrastructure on the security of smart grids,” IEEE Trans. Ind. Inf., vol. 15, no. 7, pp. 4342–4351, Jul. 2019. doi: 10.1109/TII.2018.2886292

[24] 
R. H. Jhaveri, S. V. Ramani, G. Srivastava, T. R. Gadekallu, and V. Aggarwal, “Faultresilience for bandwidth management in industrial softwaredefined networks,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 4, pp. 3129–3139, Oct.–Dec. 2021. doi: 10.1109/TNSE.2021.3104499

[25] 
K. H. Lu and Q. X. Zhu, “Nonsmooth continuoustime distributed algorithms for seeking generalized Nash equilibria of noncooperative games via digraphs,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6196–6206, Jul. 2022. doi: 10.1109/TCYB.2021.3049463

[26] 
K. Ma, C. S. Wang, J. Yang, C. C. Hua, and X. P. Guan, “Pricing mechanism with noncooperative game and revenue sharing contract in electricity market,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 97–106, Jan. 2019. doi: 10.1109/TCYB.2017.2766171

[27] 
L. H. Wang, Y. M. Zhang, W. Song, and Q. Q. Li, “Stochastic cooperative bidding strategy for multiple microgrids with peertopeer energy trading,” IEEE Trans. Ind. Inf., vol. 18, no. 3, pp. 1447–1457, Mar. 2022. doi: 10.1109/TII.2021.3094274

[28] 
M. E. Khodayar and M. Shahidehpour, “Optimal strategies for multiple participants in electricity markets,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 986–987, Mar. 2014. doi: 10.1109/TPWRS.2013.2288020

[29] 
R. A. Jabr, “Mixedinteger convex optimization for DC microgrid droop control,” IEEE Trans. Power Syst., vol. 36, no. 6, pp. 5901–5908, Nov. 2021. doi: 10.1109/TPWRS.2021.3083678

[30] 
B. B. Wang, Z. Han, and K. J. R. Liu, “Distributed relay selection and power control for multiuser cooperative communication networks using Stackelberg game,” IEEE Trans. Mobile Comput., vol. 8, no. 7, pp. 975–990, Jul. 2009. doi: 10.1109/TMC.2008.153

[31] 
M. Löschenbrand and M. Korpås, “Multiple Nash equilibria in electricity markets with pricemaking hydrothermal producers,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 422–431, Jan. 2019. doi: 10.1109/TPWRS.2018.2858574

[32] 
H. A. Nguyen, H. Guo, and K. S. Low, “Realtime estimation of sensor node’s position using particle swarm optimization with logbarrier constraint,” IEEE Trans. Instrum. Meas., vol. 60, no. 11, pp. 3619–3628, Nov. 2011. doi: 10.1109/TIM.2011.2135030

[33] 
Z. J. Liu, X. Zhang, M. Su, Y. Sun, H. Han, and P. Wang, “Convergence analysis of NewtonRaphson method in feasible powerflow for DC network,” IEEE Trans. Power Syst., vol. 35, no. 5, pp. 4100–4103, Sept. 2020. doi: 10.1109/TPWRS.2020.2986706

[34] 
X. Y. Cao and K. J. R. Liu, “Distributed Newton’s method for network cost minimization,” IEEE Trans. Autom. Control, vol. 66, no. 3, pp. 1278–1285, Mar. 2021. doi: 10.1109/TAC.2020.2989266

[35] 
X. Zhao, Y. Bai, L. L. Ding, and L. Wang, “Tripartite evolutionary game theory approach for lowcarbon power grid technology cooperation with government intervention,” IEEE Access, vol. 8, pp. 47357–47369, Feb. 2020. doi: 10.1109/ACCESS.2020.2974666

[36] 
L. F. Cheng and T. Yu, “Nash equilibriumbased asymptotic stability analysis of multigroup asymmetric evolutionary games in typical scenario of electricity market,” IEEE Access, vol. 6, pp. 32064–32086, May 2018. doi: 10.1109/ACCESS.2018.2842469

[37] 
K. Hein, Y. Xu, G. Wilson, and A. K. Gupta, “Coordinated optimal voyage planning and energy management of allelectric ship with hybrid energy storage system,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2355–2365, May 2021. doi: 10.1109/TPWRS.2020.3029331

[38] 
B. Long, T. X. Cao, W. T. Fang, K. T. Chong, and J. M. Guerrero, “Model predictive control of a threephase twolevel fourleg gridconnected converter based on sphere decoding method,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2283–2297, Feb. 2021. doi: 10.1109/TPEL.2020.3006432
