IEEE/CAA Journal of Automatica Sinica
Citation: | R. R. Hossain and R. Kumar, “Machine learning accelerated real-time model predictive control for power systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 916–930, Apr. 2023. doi: 10.1109/JAS.2023.123135 |
[1] |
N. Hatziargyriou, J. Milanovic, C. Rahmann, V. Ajjarapu, C. Canizares, I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal, P. Pourbeik, J. Sanchez-Gasca, A. Stankovic, T. Van Cutsem, V. Vittal, and C. Vournas, “Definition and classification of power system stability-revisited & extended,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3271–3281, Jul. 2021. doi: 10.1109/TPWRS.2020.3041774
|
[2] |
L. Robitzky, T. Weckesser, U. Häger, C. Rehtanz, and T. Van Cutsem, “Agent-based identification and control of voltage emergency situations,” IET Gener.,Transm. Distrib., vol. 12, no. 6, pp. 1446–1454, Mar. 2018. doi: 10.1049/iet-gtd.2017.1167
|
[3] |
C. Vournas and M. Karystianos, “Load tap changers in emergency and preventive voltage stability control,” IEEE Trans. Power Syst., vol. 19, no. 1, pp. 492–498, Feb. 2004. doi: 10.1109/TPWRS.2003.818728
|
[4] |
California ISO, “Notification of revised RC west operating procedure RC0410 - System Emergencies.” 2021. [Online]. Available: https://www.caiso.com/Documents/Notification-RevisedRCWestOperatingProceduresRC0210-RC0410-RC0660.html.
|
[5] |
D. Pal, B. Mallikarjuna, P. Gopakumar, M. J. B. Reddy, B. K. Panigrahi, and D. K. Mohanta, “Probabilistic study of undervoltage load shedding scheme to mitigate the impact of protection system hidden failures,” IEEE Syst. J., vol. 14, no. 1, pp. 862–869, Mar. 2020. doi: 10.1109/JSYST.2019.2901350
|
[6] |
M. Glavic and T. Van Cutsem, “Some reflections on model predictive control of transmission voltages,” in Proc. 38th North American Power Symp., Carbondale, USA, 2006, pp. 625−632.
|
[7] |
I. A. Hiskens and M. Vrakopoulou, “Model predictive control for power networks,” in Encyclopedia of Systems and Control, J. Baillieul and T. Samad, Eds. Cham, Switzerland: Springer, 2021, pp. 1234−1239.
|
[8] |
S. J. Geng and I. A. Hiskens, “Second-order trajectory sensitivity analysis of hybrid systems,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 66, no. 5, pp. 1922–1934, May 2019. doi: 10.1109/TCSI.2019.2903196
|
[9] |
L. C. Jin, R. Kumar, and N. Elia, “Model predictive control-based real-time power system protection schemes,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 988–998, May 2010. doi: 10.1109/TPWRS.2009.2034748
|
[10] |
G. J. Hou and V. Vittal, “Trajectory sensitivity based preventive control of voltage instability considering load uncertainties,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2280–2288, Nov. 2012. doi: 10.1109/TPWRS.2012.2190534
|
[11] |
Y. Zhang, M. Liu, W. Zhang, W. C. Sun, X. W. Hu, and G. Kong, “Power system voltage correction scheme based on adaptive horizon model predictive control,” Appl. Sci., vol. 8, no. 4, p. 641, Apr. 2018. doi: 10.3390/app8040641
|
[12] |
M. S. Mahmoud and M. O. Oyedeji, “Adaptive and predictive control strategies for wind turbine systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 364–378, Mar. 2019. doi: 10.1109/JAS.2019.1911375
|
[13] |
C. C. Jin, W. D. Li, J. K. Shen, P. Li, L. Liu, and K. R. Wen, “Active frequency response based on model predictive control for bulk power system,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3002–3013, Jul. 2019. doi: 10.1109/TPWRS.2019.2900664
|
[14] |
J. Z. Liu, Q. Yao, and Y. Hu, “Model predictive control for load frequency of hybrid power system with wind power and thermal power,” Energy, vol. 172, pp. 555–565, Apr. 2019. doi: 10.1016/j.energy.2019.01.071
|
[15] |
A. Oshnoei, M. Kheradmandi, R. Khezri, and A. Mahmoudi, “Robust model predictive control of gate-controlled series capacitor for LFC of power systems,” IEEE Trans. Ind. Inf., vol. 17, no. 7, pp. 4766–4776, Jul. 2021. doi: 10.1109/TII.2020.3016992
|
[16] |
R. K. Subroto, K. L. Lian, C. C. Chu, and C. J. Liao, “A fast frequency control based on model predictive control taking into account of optimal allocation of power from the energy storage system,” IEEE Trans. Power Delivery, vol. 36, no. 4, pp. 2467–2478, Aug. 2021. doi: 10.1109/TPWRD.2021.3078217
|
[17] |
Z. B. Zhang, O. Babayomi, T. Dragicevic, R. Heydari, C. Garcia, J. Rodriguez, and R. Kennel, “Advances and opportunities in the model predictive control of microgrids: Part I–primary layer,” Int. J. Electr. Power Energy Syst., vol. 134, p. 107411, Jan. 2022. doi: 10.1016/j.ijepes.2021.107411
|
[18] |
F. Kamal and B. Chowdhury, “Model predictive control and optimization of networked microgrids,” Int. J. Electr. Power Energy Syst., vol. 138, p. 107804, Jun. 2022. doi: 10.1016/j.ijepes.2021.107804
|
[19] |
Z. D. Zhang, D. X. Zhang, and R. C. Qiu, “Deep reinforcement learning for power system applications: An overview,” CSEE J. Power Energy Syst., vol. 6, no. 1, pp. 213–225, Mar. 2020.
|
[20] |
Q. H. Huang, R. K. Huang, W. T. Hao, J. Tan, R. Fan, and Z. Y. Huang, “Adaptive power system emergency control using deep reinforcement learning,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1171–1182, Mar. 2020. doi: 10.1109/TSG.2019.2933191
|
[21] |
C. Y. Chen, M. J. Cui, F. X. Li, S. F. Yin, and X. N. Wang, “Model-free emergency frequency control based on reinforcement learning,” IEEE Trans. Ind. Inf., vol. 17, no. 4, pp. 2336–2346, Apr. 2021. doi: 10.1109/TII.2020.3001095
|
[22] |
J. Xie and W. Sun, “Distributional deep reinforcement learning-based emergency frequency control,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 2720–2730, Jul. 2022. doi: 10.1109/TPWRS.2021.3130413
|
[23] |
X. Chen, G. N. Qu, Y. J. Tang, S. Low, and N. Li, “Reinforcement learning for selective key applications in power systems: Recent advances and future challenges,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2935–2958, Jul. 2022. doi: 10.1109/TSG.2022.3154718
|
[24] |
K. L. Teo, B. Li, C. J. Yu, V. Rehbock, Applied and Computational Optimal Control: A Control Parametrization Approach. Cham, Switzerland: Springer, 2021.
|
[25] |
J. Machowski, Z. Lubosny, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control. 3rd ed. John Wiley & Sons, 2020.
|
[26] |
D. P. Bertsekas, Dynamic Programming and Optimal Control. vol. 1, Athena Scientific, 2012.
|
[27] |
M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: An engineering perspective,” Int. J. Adv. Manuf. Technol., vol. 117, no. 5, pp. 1327–1349, Aug. 2021.
|
[28] |
I. A. Hiskens and M. A. Pai, “Trajectory sensitivity analysis of hybrid systems,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 47, no. 2, pp. 204–220, Feb. 2000. doi: 10.1109/81.828574
|
[29] |
Y. F. Guo, Q. W. Wu, H. L. Gao, X. Y. Chen, J. Østergaard, and H. H. Xin, “MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system,” IEEE Trans. Sustainable Energy, vol. 10, no. 4, pp. 1731–1739, Oct. 2019. doi: 10.1109/TSTE.2018.2869932
|
[30] |
J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms,” Appl. Energy, vol. 221, pp. 386–405, Jul. 2018. doi: 10.1016/j.apenergy.2018.02.069
|
[31] |
M. Chammas, A. Makhoul, and J. Demerjian, “An efficient data model for energy prediction using wireless sensors,” Comput. Electr. Eng., vol. 76, pp. 249–257, Jun. 2019. doi: 10.1016/j.compeleceng.2019.04.002
|
[32] |
M. A. F. B. Lima, L. M. F. Ramírez, P. C. M. Carvalho, J. G. Batista, and D. M. Freitas, “A comparison between deep learning and support vector regression techniques applied to solar forecast in Spain,” J. Sol. Energy Eng., vol. 144, no. 1, p. 010802, Feb. 2022. doi: 10.1115/1.4051949
|
[33] |
F. Milano, “An open source power system analysis toolbox,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1199–1206, Aug. 2005. doi: 10.1109/TPWRS.2005.851911
|
[34] |
R. R. Hossain and R. Kumar., “Computation of trajectory sensitivities with respect to control and implementation in PSAT,” in Proc. 16th Int. Conf. Informatics in Control, Automation and Robotics - Volume 1: ICINCO, Prague, Czech, 2019, pp. 752−759.
|
[35] |
K. Zhang, J. Zhang, P. D. Xu, T. L. Gao, and D. W. Gao, “Explainable AI in deep reinforcement learning models for power system emergency control,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 2, pp. 419–427, Apr. 2022. doi: 10.1109/TCSS.2021.3096824
|
[36] |
T. Schreiber, “Interdisciplinary application of nonlinear time series methods,” Phys. Rep., vol. 308, no. 1, pp. 1–64, Jan. 1999. doi: 10.1016/S0370-1573(98)00035-0
|
[37] |
C. Q. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Y. Kong, and S. T. S. Bukkapatnam, “Time series forecasting for nonlinear and non-stationary processes: A review and comparative study,” IIE Trans., vol. 47, no. 10, pp. 1053–1071, Apr. 2015. doi: 10.1080/0740817X.2014.999180
|
[38] |
L. Ye, J. L. Sun, T. B. Zhou, J. Zhang, W. Z. Sun, and H. L. Xi, “A practical under-voltage load shedding strategy for regional power grid considering multiple operating modes,” Energy Rep., vol. 7, no. S1, pp. 175–182, Apr. 2021.
|
[39] |
S. Talukder, M. Ibrahim, and R. Kumar, “Resilience indices for power/cyberphysical systems,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 4, pp. 2159–2172, Apr. 2021. doi: 10.1109/TSMC.2020.3018706
|