A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
R. R. Hossain and R. Kumar, “Machine learning accelerated real-time model predictive control for power systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 916–930, Apr. 2023. doi: 10.1109/JAS.2023.123135
Citation: R. R. Hossain and R. Kumar, “Machine learning accelerated real-time model predictive control for power systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 916–930, Apr. 2023. doi: 10.1109/JAS.2023.123135

Machine Learning Accelerated Real-Time Model Predictive Control for Power Systems

doi: 10.1109/JAS.2023.123135
Funds:  This work was supported in part by the National Science Foundation (NSF-CSSI-2004766, NSF-PFI-2141084)
More Information
  • This paper presents a machine-learning-based speed-up strategy for real-time implementation of model-predictive-control (MPC) in emergency voltage stabilization of power systems. Despite success in various applications, real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems, and in power systems, the computation time exceeds the available decision time used in practice by a large extent. This long-standing problem is addressed here by developing a novel MPC-based framework that i) computes an optimal strategy for nominal loads in an offline setting and adapts it for real-time scenarios by successive online control corrections at each control instant utilizing the latest measurements, and ii) employs a machine-learning based approach for the prediction of voltage trajectory and its sensitivity to control inputs, thereby accelerating the overall control computation by multiple times. Additionally, a realistic control coordination scheme among static var compensators (SVC), load-shedding (LS), and load tap-changers (LTC) is presented that incorporates the practical delayed actions of the LTCs. The performance of the proposed scheme is validated for IEEE 9-bus and 39-bus systems, with ±20% variations in nominal loading conditions together with contingencies. We show that our proposed methodology speeds up the online computation by 20-fold, bringing it down to a practically feasible value (fraction of a second), making the MPC real-time and feasible for power system control for the first time.

     

  • loading
  • [1]
    N. Hatziargyriou, J. Milanovic, C. Rahmann, V. Ajjarapu, C. Canizares, I. Erlich, D. Hill, I. Hiskens, I. Kamwa, B. Pal, P. Pourbeik, J. Sanchez-Gasca, A. Stankovic, T. Van Cutsem, V. Vittal, and C. Vournas, “Definition and classification of power system stability-revisited & extended,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3271–3281, Jul. 2021. doi: 10.1109/TPWRS.2020.3041774
    [2]
    L. Robitzky, T. Weckesser, U. Häger, C. Rehtanz, and T. Van Cutsem, “Agent-based identification and control of voltage emergency situations,” IET Gener.,Transm. Distrib., vol. 12, no. 6, pp. 1446–1454, Mar. 2018. doi: 10.1049/iet-gtd.2017.1167
    [3]
    C. Vournas and M. Karystianos, “Load tap changers in emergency and preventive voltage stability control,” IEEE Trans. Power Syst., vol. 19, no. 1, pp. 492–498, Feb. 2004. doi: 10.1109/TPWRS.2003.818728
    [4]
    California ISO, “Notification of revised RC west operating procedure RC0410 - System Emergencies.” 2021. [Online]. Available: https://www.caiso.com/Documents/Notification-RevisedRCWestOperatingProceduresRC0210-RC0410-RC0660.html.
    [5]
    D. Pal, B. Mallikarjuna, P. Gopakumar, M. J. B. Reddy, B. K. Panigrahi, and D. K. Mohanta, “Probabilistic study of undervoltage load shedding scheme to mitigate the impact of protection system hidden failures,” IEEE Syst. J., vol. 14, no. 1, pp. 862–869, Mar. 2020. doi: 10.1109/JSYST.2019.2901350
    [6]
    M. Glavic and T. Van Cutsem, “Some reflections on model predictive control of transmission voltages,” in Proc. 38th North American Power Symp., Carbondale, USA, 2006, pp. 625−632.
    [7]
    I. A. Hiskens and M. Vrakopoulou, “Model predictive control for power networks,” in Encyclopedia of Systems and Control, J. Baillieul and T. Samad, Eds. Cham, Switzerland: Springer, 2021, pp. 1234−1239.
    [8]
    S. J. Geng and I. A. Hiskens, “Second-order trajectory sensitivity analysis of hybrid systems,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 66, no. 5, pp. 1922–1934, May 2019. doi: 10.1109/TCSI.2019.2903196
    [9]
    L. C. Jin, R. Kumar, and N. Elia, “Model predictive control-based real-time power system protection schemes,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 988–998, May 2010. doi: 10.1109/TPWRS.2009.2034748
    [10]
    G. J. Hou and V. Vittal, “Trajectory sensitivity based preventive control of voltage instability considering load uncertainties,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2280–2288, Nov. 2012. doi: 10.1109/TPWRS.2012.2190534
    [11]
    Y. Zhang, M. Liu, W. Zhang, W. C. Sun, X. W. Hu, and G. Kong, “Power system voltage correction scheme based on adaptive horizon model predictive control,” Appl. Sci., vol. 8, no. 4, p. 641, Apr. 2018. doi: 10.3390/app8040641
    [12]
    M. S. Mahmoud and M. O. Oyedeji, “Adaptive and predictive control strategies for wind turbine systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 364–378, Mar. 2019. doi: 10.1109/JAS.2019.1911375
    [13]
    C. C. Jin, W. D. Li, J. K. Shen, P. Li, L. Liu, and K. R. Wen, “Active frequency response based on model predictive control for bulk power system,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3002–3013, Jul. 2019. doi: 10.1109/TPWRS.2019.2900664
    [14]
    J. Z. Liu, Q. Yao, and Y. Hu, “Model predictive control for load frequency of hybrid power system with wind power and thermal power,” Energy, vol. 172, pp. 555–565, Apr. 2019. doi: 10.1016/j.energy.2019.01.071
    [15]
    A. Oshnoei, M. Kheradmandi, R. Khezri, and A. Mahmoudi, “Robust model predictive control of gate-controlled series capacitor for LFC of power systems,” IEEE Trans. Ind. Inf., vol. 17, no. 7, pp. 4766–4776, Jul. 2021. doi: 10.1109/TII.2020.3016992
    [16]
    R. K. Subroto, K. L. Lian, C. C. Chu, and C. J. Liao, “A fast frequency control based on model predictive control taking into account of optimal allocation of power from the energy storage system,” IEEE Trans. Power Delivery, vol. 36, no. 4, pp. 2467–2478, Aug. 2021. doi: 10.1109/TPWRD.2021.3078217
    [17]
    Z. B. Zhang, O. Babayomi, T. Dragicevic, R. Heydari, C. Garcia, J. Rodriguez, and R. Kennel, “Advances and opportunities in the model predictive control of microgrids: Part I–primary layer,” Int. J. Electr. Power Energy Syst., vol. 134, p. 107411, Jan. 2022. doi: 10.1016/j.ijepes.2021.107411
    [18]
    F. Kamal and B. Chowdhury, “Model predictive control and optimization of networked microgrids,” Int. J. Electr. Power Energy Syst., vol. 138, p. 107804, Jun. 2022. doi: 10.1016/j.ijepes.2021.107804
    [19]
    Z. D. Zhang, D. X. Zhang, and R. C. Qiu, “Deep reinforcement learning for power system applications: An overview,” CSEE J. Power Energy Syst., vol. 6, no. 1, pp. 213–225, Mar. 2020.
    [20]
    Q. H. Huang, R. K. Huang, W. T. Hao, J. Tan, R. Fan, and Z. Y. Huang, “Adaptive power system emergency control using deep reinforcement learning,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1171–1182, Mar. 2020. doi: 10.1109/TSG.2019.2933191
    [21]
    C. Y. Chen, M. J. Cui, F. X. Li, S. F. Yin, and X. N. Wang, “Model-free emergency frequency control based on reinforcement learning,” IEEE Trans. Ind. Inf., vol. 17, no. 4, pp. 2336–2346, Apr. 2021. doi: 10.1109/TII.2020.3001095
    [22]
    J. Xie and W. Sun, “Distributional deep reinforcement learning-based emergency frequency control,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 2720–2730, Jul. 2022. doi: 10.1109/TPWRS.2021.3130413
    [23]
    X. Chen, G. N. Qu, Y. J. Tang, S. Low, and N. Li, “Reinforcement learning for selective key applications in power systems: Recent advances and future challenges,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2935–2958, Jul. 2022. doi: 10.1109/TSG.2022.3154718
    [24]
    K. L. Teo, B. Li, C. J. Yu, V. Rehbock, Applied and Computational Optimal Control: A Control Parametrization Approach. Cham, Switzerland: Springer, 2021.
    [25]
    J. Machowski, Z. Lubosny, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control. 3rd ed. John Wiley & Sons, 2020.
    [26]
    D. P. Bertsekas, Dynamic Programming and Optimal Control. vol. 1, Athena Scientific, 2012.
    [27]
    M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: An engineering perspective,” Int. J. Adv. Manuf. Technol., vol. 117, no. 5, pp. 1327–1349, Aug. 2021.
    [28]
    I. A. Hiskens and M. A. Pai, “Trajectory sensitivity analysis of hybrid systems,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 47, no. 2, pp. 204–220, Feb. 2000. doi: 10.1109/81.828574
    [29]
    Y. F. Guo, Q. W. Wu, H. L. Gao, X. Y. Chen, J. Østergaard, and H. H. Xin, “MPC-based coordinated voltage regulation for distribution networks with distributed generation and energy storage system,” IEEE Trans. Sustainable Energy, vol. 10, no. 4, pp. 1731–1739, Oct. 2019. doi: 10.1109/TSTE.2018.2869932
    [30]
    J. Lago, F. De Ridder, and B. De Schutter, “Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms,” Appl. Energy, vol. 221, pp. 386–405, Jul. 2018. doi: 10.1016/j.apenergy.2018.02.069
    [31]
    M. Chammas, A. Makhoul, and J. Demerjian, “An efficient data model for energy prediction using wireless sensors,” Comput. Electr. Eng., vol. 76, pp. 249–257, Jun. 2019. doi: 10.1016/j.compeleceng.2019.04.002
    [32]
    M. A. F. B. Lima, L. M. F. Ramírez, P. C. M. Carvalho, J. G. Batista, and D. M. Freitas, “A comparison between deep learning and support vector regression techniques applied to solar forecast in Spain,” J. Sol. Energy Eng., vol. 144, no. 1, p. 010802, Feb. 2022. doi: 10.1115/1.4051949
    [33]
    F. Milano, “An open source power system analysis toolbox,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1199–1206, Aug. 2005. doi: 10.1109/TPWRS.2005.851911
    [34]
    R. R. Hossain and R. Kumar., “Computation of trajectory sensitivities with respect to control and implementation in PSAT,” in Proc. 16th Int. Conf. Informatics in Control, Automation and Robotics - Volume 1: ICINCO, Prague, Czech, 2019, pp. 752−759.
    [35]
    K. Zhang, J. Zhang, P. D. Xu, T. L. Gao, and D. W. Gao, “Explainable AI in deep reinforcement learning models for power system emergency control,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 2, pp. 419–427, Apr. 2022. doi: 10.1109/TCSS.2021.3096824
    [36]
    T. Schreiber, “Interdisciplinary application of nonlinear time series methods,” Phys. Rep., vol. 308, no. 1, pp. 1–64, Jan. 1999. doi: 10.1016/S0370-1573(98)00035-0
    [37]
    C. Q. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Y. Kong, and S. T. S. Bukkapatnam, “Time series forecasting for nonlinear and non-stationary processes: A review and comparative study,” IIE Trans., vol. 47, no. 10, pp. 1053–1071, Apr. 2015. doi: 10.1080/0740817X.2014.999180
    [38]
    L. Ye, J. L. Sun, T. B. Zhou, J. Zhang, W. Z. Sun, and H. L. Xi, “A practical under-voltage load shedding strategy for regional power grid considering multiple operating modes,” Energy Rep., vol. 7, no. S1, pp. 175–182, Apr. 2021.
    [39]
    S. Talukder, M. Ibrahim, and R. Kumar, “Resilience indices for power/cyberphysical systems,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 4, pp. 2159–2172, Apr. 2021. doi: 10.1109/TSMC.2020.3018706

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(24)  / Tables(6)

    Article Metrics

    Article views (714) PDF downloads(136) Cited by()

    Highlights

    • A novel machine learning accelerated perturbation control based Model Predictive Control (MPC) method is presented for power systems
    • Despite success in various applications, real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems, and in power systems, the computation time exceeds the available decision time by a large extent
    • This long-standing problem is addressed here by developing a novel MPC-based control framework that (i) adapts the nominal offline computed control, by successive control corrections, at each control decision point using the latest measurements, (ii) utilizes a machine learning approach for the prediction of voltage trajectory and its sensitivity with respect to control using trained neural networks (NNs) to save on computation time
    • A control scheme involving realistic coordination among SVC, LS, and LTC is proposed, where the slow-acting LTCs are formulated to have a delayed control effect to appropriately reflect their real-world behavior

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return