A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Y. Zhang and S. Li, “Kinematic control of serial manipulators under false data injection attack,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1009–1019, Apr. 2023. doi: 10.1109/JAS.2023.123132
Citation: Y. Y. Zhang and S. Li, “Kinematic control of serial manipulators under false data injection attack,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1009–1019, Apr. 2023. doi: 10.1109/JAS.2023.123132

Kinematic Control of Serial Manipulators Under False Data Injection Attack

doi: 10.1109/JAS.2023.123132
Funds:  This work was supported in part by the National Natural Science Foundation of China (62206109) and the Fundamental Research Funds for the Central Universities (21620346)
More Information
  • With advanced communication technologies, cyber-physical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks. While lots of benefits can be achieved with such a configuration, it also brings the concern of cyber attacks to the industrial control systems, such as networked manipulators that are widely adopted in industrial automation. For such systems, a false data injection attack on a control-center-to-manipulator (CC-M) communication channel is undesirable, and has negative effects on the manufacture quality. In this paper, we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model. Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack. The efficacy of the proposed method is validated via simulations.


  • loading
  • [1]
    D. Ye and T. Zhang, “Summation detector for false data-injection attack in cyber-physical systems,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2338–2345, Jun. 2020. doi: 10.1109/TCYB.2019.2915124
    K. Kashima and D. Inoue, “Replay attack detection in control systems with quantized signals,” in Proc. European Control Conf., Linz, Austria, Jul. 2015, pp. 782–787.
    Y. Zhao, Z. Chen, C. Zhou, Y. C. Tian, and Y. Qin, “Passivity-based robust control against quantified false data injection attacks in cyber-physical systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1440–1450, Aug. 2021. doi: 10.1109/JAS.2021.1004012
    Y. Dong, N. Gupta, and N. Chopra, “False data injection attacks in bilateral teleoperation systems,” IEEE Trans. Control Syst. Techonol., vol. 28, no. 3, pp. 1168–1176, May 2020. doi: 10.1109/TCST.2019.2903446
    G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of false data injection attacks against modern power systems,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1630–1638, Jul. 2017. doi: 10.1109/TSG.2015.2495133
    Z. H. Pang, G. P. Liu, D. Zhou, F. Hou, and D. Sun, “Two-channel false data injection attacks against output tracking control of networked systems,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 3242–3251, May 2016. doi: 10.1109/TIE.2016.2535119
    A. Y. Lu and G. H. Yang, “False data injection attacks against state estimation in the presence of sensor failures,” Inf. Sci., vol. 508, pp. 92–104, Jan. 2020. doi: 10.1016/j.ins.2019.08.052
    Z. Gu, J. H. Park, D. Yue, Z. G. Wu, and X. Xie, “Event-triggered security output feedback control for networked interconnected systems subject to cyber-attacks,” IEEE Trans. Syst.,Man,Cybern.,Syst., vol. 51, no. 10, pp. 6197–6206, Oct. 2021. doi: 10.1109/TSMC.2019.2960115
    H. Modares, B. Kiumarsi, F. L. Lewis, F. Ferrese, and A. Davoudi, “Resilient and robust synchronization of multiagent systems under attacks on sensors and actuators,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1240–1250, Mar. 2020. doi: 10.1109/TCYB.2019.2903411
    W. He, Z. Mo, Q. L. Han, and F. Qian, “Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326–1334, Sept. 2020.
    W. Fu, J. Qin, Y. Shi, W. X. Zheng, and Y. Kang, “Resilient consensus of discrete-time complex cyber-physical networks under deception attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4868–4877, Jul. 2020. doi: 10.1109/TII.2019.2933596
    Y. Yuan, H. Yuan, L. Guo, H. Yang, and S. Sun, “Resilient control of networked control system under DoS attacks: A unified game approach,” IEEE Trans. Ind. Inform., vol. 12, no. 5, pp. 1786–1794, Oct. 2016. doi: 10.1109/TII.2016.2542208
    K. Guo, H. Su, and C. Yang, “A small opening workspace control strategy for redundant manipulator based on RCM method,” IEEE Trans. Control Syst. Technol., DOI: 10.1109/TCST.2022.3145645.
    C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112–8123, Oct. 2018. doi: 10.1109/TIE.2018.2803773
    D. Li, W. Zhang, W. He, C. Li, and S. S. Ge, “Two-layer distributed formation-containment control of multiple Euler-Lagrange systems by output feedback,” IEEE Trans. Cybern., vol. 49, no. 2, pp. 675–687, 2019. doi: 10.1109/TCYB.2017.2786318
    S. Li, Y. Zhang, and L. Jin, “Kinematic control of redundant manipulators using neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2243–2254, Oct. 2017. doi: 10.1109/TNNLS.2016.2574363
    Y. Zhang, S. Li, J. Zou, and A. H. Khan, “A passivity-based approach for kinematic control of manipulators with constraints,” IEEE Trans. Ind. Inform., vol. 16, no. 5, pp. 3029–3038, May 2020. doi: 10.1109/TII.2019.2908442
    L. Jin, S. Li, J. Yu, and J. He, “Robot manipulator control using neural networks: A survey,” Neurocomputing, vol. 285, pp. 23–34, Apr. 2018. doi: 10.1016/j.neucom.2018.01.002
    D. Guo, F. Xu, and L. Yan, “New pseudoinverse-based path-planning scheme with PID characteristic for redundant robot manipulators in the presence of noise,” IEEE Trans. Control Syst. Technol., vol. 26, no. 6, pp. 2008–2019, Nov. 2018. doi: 10.1109/TCST.2017.2756029
    L. Jin, S. Li, H. M. La, and X. Luo, “Manipulability optimization of redundant manipulators using dynamic neural networks,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4710–4720, Jun. 2017. doi: 10.1109/TIE.2017.2674624
    Y. Zhang, “Tri-projection neural network for redundant manipulators,” IEEE Trans. Circuits Syst. II Exp. Briefs, DOI: 10.1109/TCSII.2022.3189664.
    F. Maggi, A. M. Zanchettin, and S. Zanero, “An experimental security analysis of an industrial robot controller,” in Proc. IEEE Symp. Security Privacy, Davide, Quarta, 2017, pp. 268–285.
    M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey of internet of things (IoT) authentication schemes,” Sensors, vol. 19, no. 5, p. 1141, 2019. doi: 10.3390/s19051141
    Y. Zhang, S. Chen, S. Li, and Z. Zhang, “Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 4909–4920, Jun. 2018. doi: 10.1109/TIE.2017.2774720
    M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control, vol. 3. New York, NY, USA: Wiley, 2006.
    S. Li, J. He, Y. Li, and M. U. Rafique, “Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective,” IEEE Trans. Neuarl Netw. Learn. Syst., vol. 28, no. 2, pp. 415–426, Feb. 2017. doi: 10.1109/TNNLS.2016.2516565
    Y. Zhang, J. Wang, and Y. Xia, “A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits,” IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 658–667, May 2003. doi: 10.1109/TNN.2003.810607
    S. Yoo, “Neural-network-based adaptive resilient dynamic surface control against unknown deception attacks of uncertain nonlinear time-delay cyberphysical systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 4341–4353, Oct. 2020. doi: 10.1109/TNNLS.2019.2955132
    S. Song, J. H. Park, B. Zhang, and X. Song, “Event-based adaptive fuzzy fixed-time secure control for nonlinear CPSs against unknown false data injection and backlash-like hysteresis,” IEEE Trans. Fuzyy Syst., vol. 30, no. 6, pp. 1939–1951, Jun. 2022. doi: 10.1109/TFUZZ.2021.3070700
    Q. Zhang, K. Liu, D. Han, G. Su, and Y. Xia, “Design of stealthy deception attacks with partial system knowledge,” IEEE Trans. Autom. Control, DOI: 10.1109/TAC.2022.3146079.
    C. Liu, W. He, R. Deng, Y. Tian, and W. Du, “False data injection enabled network parameter modifications in power systems: Attack and detection,” IEEE Trans. Ind. Inform., DOI: 10.1109/TII.2022.3172688.
    Q. Zhang, K. Liu, Y. Xia, and A. Ma, “Optimal stealthy deception attack against cyber-physical systems,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3963–3972, Sept. 2020. doi: 10.1109/TCYB.2019.2912622
    Y. Zhang, S. Li, and X. Jiang, “Near-optimal control without solving HJB equations and its applications,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 7173–7184, Sept. 2018. doi: 10.1109/TIE.2018.2793233
    Y. Lin, Z. Chen, and B. Yao, “Decoupled torque control of series elastic actuator with adaptive robust compensation of time-varying load-side dynamics,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5604–5614, Jul. 2020. doi: 10.1109/TIE.2019.2934023
    L. Chen, R. Cui, C. Yang, and W. Yan, “Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: Theory and experimental results,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 4024–4035, May 2020. doi: 10.1109/TIE.2019.2914631
    J. Dattorro, Convex Optimization And Euclidean Distance Geometry. California, USA: Meboo Publishing, 2016.
    H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2001.
    Y. Zhang, S. Li, and X. Liu, “Adaptive near-optimal control of uncertain systems with application to underactuated surface vessels,” IEEE Trans. Control Syst. Techonol., vol. 26, no. 4, pp. 1204–1218, Jul. 2018. doi: 10.1109/TCST.2017.2705057
    Y. Zhang, S. Li, and X. Zhou, “Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3573–3582, May 2019. doi: 10.1109/TIE.2018.2851960
    O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications. New York, NY, USA: Cambridge Univ. Press, 2009.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (368) PDF downloads(77) Cited by()


    • This is the first paper considering the security issue of serial manipulators in the control
    • This paper presents a co-design of kinematics control and attack identification
    • We present both theoretical analysis and numerical experiments to validate the effectiveness


    DownLoad:  Full-Size Img  PowerPoint