IEEE/CAA Journal of Automatica Sinica
Citation: | A. Chaddad, Q. Z. Lu, J. L. Li, Y. Katib, R. Kateb, C. Tanougast, A. Bouridane, and A. Abdulkadir, “Explainable, domain-adaptive, and federated artificial intelligence in medicine,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 859–876, Apr. 2023. doi: 10.1109/JAS.2023.123123 |
[1] |
S. C. Shapiro, Encyclopedia of Artificial Intelligence. 2nd ed. New York, USA: Wiley, 1992.
|
[2] |
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. A. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet large scale visual recognition challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015. doi: 10.1007/s11263-015-0816-y
|
[3] |
H. D. Li, J. C. Li, X. M. Guan, B. H. Liang, Y. T. Lai, and X. L. Luo, “Research on overfitting of deep learning,” in Proc. 15th Int. Conf. Computational Intelligence and Security, Macao, China, 2019, pp. 78−81.
|
[4] |
O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y. Wang, T. Pfaff, Y. H. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in StarCraft II using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, Nov. 2019. doi: 10.1038/s41586-019-1724-z
|
[5] |
A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High confidence predictions for unrecognizable images,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 427−436.
|
[6] |
G. Varoquaux and V. Cheplygina, “Machine learning for medical imaging: Methodological failures and recommendations for the future,” NPJ Digit. Med., vol. 5, no. 1, p. 48, Apr. 2022. doi: 10.1038/s41746-022-00592-y
|
[7] |
M. Gaur, K. Faldu, and A. Sheth, “Semantics of the black-box: Can knowledge graphs help make deep learning systems more interpretable and explainable?” IEEE Internet Comput., vol. 25, no. 1, pp. 51–59, Jan.-Feb. 2021. doi: 10.1109/MIC.2020.3031769
|
[8] |
A. Adadi and M. Berrada, “Explainable AI for healthcare: From black box to interpretable models,” in Embedded Systems and Artificial Intelligence, V. Bhateja, S. C. Satapathy, and H. Satori, Eds. Singapore, Singapore: Springer, 2020, pp. 327−337.
|
[9] |
G. Yang, Q. H. Ye, and J. Xia, “Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond,” Inf. Fusion, vol. 77, pp. 29–52, Jan. 2022. doi: 10.1016/j.inffus.2021.07.016
|
[10] |
A. Holzinger, “The next frontier: AI we can really trust,” in Proc. Joint European Conf. Machine Learning and Knowledge Discovery in Databases, 2021, pp. 427−440.
|
[11] |
A. Holzinger, M. Dehmer, F. Emmert-Streib, R. Cucchiara, I. Augenstein, J. Del Ser, W. Samek, I. Jurisica, and N. Díaz-Rodríguez, “Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence,” Inf. Fusion, vol. 79, pp. 263–278, Mar. 2022. doi: 10.1016/j.inffus.2021.10.007
|
[12] |
H. P. Chan, L. M. Hadjiiski, and R. K. Samala, “Computer-aided diagnosis in the era of deep learning,” Med. Phys., vol. 47, no. 5, pp. e218–e227, Jun. 2020.
|
[13] |
H. Guan and M. X. Liu, “Domain adaptation for medical image analysis: A survey,” IEEE Trans. Biomed. Eng., vol. 69, no. 3, pp. 1173–1185, Mar. 2022. doi: 10.1109/TBME.2021.3117407
|
[14] |
G. Bode, S. Thul, M. Baranski, and D. Müller, “Real-world application of machine-learning-based fault detection trained with experimental data,” Energy, vol. 198, p. 117323, May 2020. doi: 10.1016/j.energy.2020.117323
|
[15] |
Y. G. Lei, B. Yang, X. W. Jiang, F. Jia, N. P. Li, and A. K. Nandi, “Applications of machine learning to machine fault diagnosis: A review and roadmap,” Mech. Syst. Signal Process., vol. 138, p. 106587, Apr. 2020. doi: 10.1016/j.ymssp.2019.106587
|
[16] |
C. C. Zhang and Q. J. Zhao, “Deep discriminative domain adaptation,” Inf. Sci., vol. 575, pp. 599–610, Oct. 2021. doi: 10.1016/j.ins.2021.07.073
|
[17] |
Y. F. Zhang, Y. Wei, Q. Y. Wu, P. L. Zhao, S. C. Niu, J. Z. Huang, and M. K. Tan, “Collaborative unsupervised domain adaptation for medical image diagnosis,” IEEE Trans. Image Process., vol. 29, pp. 7834–7844, Jul. 2020. doi: 10.1109/TIP.2020.3006377
|
[18] |
P. Yang, N. X. Xiong, and J. L. Ren, “Data security and privacy protection for cloud storage: A survey,” IEEE Access, vol. 8, pp. 131723–131740, Jul. 2020. doi: 10.1109/ACCESS.2020.3009876
|
[19] |
C. Zhang, Y. Xie, H. Bai, B. Yu, W. H. Li, and Y. Gao, “A survey on federated learning,” Knowl.-Based Syst., vol. 216, p. 106775, Mar. 2021. doi: 10.1016/j.knosys.2021.106775
|
[20] |
V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and G. Srivastava, “A survey on security and privacy of federated learning,” Future Gener. Comput. Syst., vol. 115, pp. 619–640, Feb. 2021. doi: 10.1016/j.future.2020.10.007
|
[21] |
V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization techniques for federated learning,” in Proc. 4th World Conf. Smart Trends in Systems, Security and Sustainability, London, UK, 2020, pp. 794−797.
|
[22] |
S. Rashidi, M. Mehrad, H. Ghorbani, D. A. Wood, N. Mohamadian, J. Moghadasi, and S. Davoodi, “Determination of bubble point pressure & oil formation volume factor of crude oils applying multiple hidden layers extreme learning machine algorithms,” J. Pet. Sci. Eng., vol. 202, p. 108425, Jul. 2021. doi: 10.1016/j.petrol.2021.108425
|
[23] |
G. Vilone and L. Longo, “Notions of explainability and evaluation approaches for explainable artificial intelligence,” Inf. Fusion, vol. 76, pp. 89–106, Dec. 2021. doi: 10.1016/j.inffus.2021.05.009
|
[24] |
W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Definitions, methods, and applications in interpretable machine learning,” Proc. Natl. Acad. Sci. USA, vol. 116, no. 44, pp. 22071–22080, Oct. 2019. doi: 10.1073/pnas.1900654116
|
[25] |
A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, “Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI,” Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020. doi: 10.1016/j.inffus.2019.12.012
|
[26] |
A. Holzinger and H. Müller, “Toward human–AI interfaces to support explainability and causability in medical AI,” Computer, vol. 54, no. 10, pp. 78–86, Oct. 2021. doi: 10.1109/MC.2021.3092610
|
[27] |
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A survey of methods for explaining black box models,” ACM Comput. Surv., vol. 51, no. 5, p. 93, Sept. 2019.
|
[28] |
A. Mohanty and S. Mishra, “A comprehensive study of explainable artificial intelligence in healthcare,” in Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis, S. Mishra, H. K. Tripathy, P. Mallick, and K. Shaalan, Eds. Singapore, Singapore: Springer, 2022, pp. 475−502.
|
[29] |
G. Csurka, “A comprehensive survey on domain adaptation for visual applications,” in Domain Adaptation in Computer Vision Applications, G. Csurka, Ed. Cham, Germany: Springer, 2017, pp. 1−35.
|
[30] |
P. Koniusz, Y. Tas, H. G. Zhang, M. Harandi, F. Porikli, and R. Zhang, “Museum exhibit identification challenge for the supervised domain adaptation and beyond,” in Proc. 15th European Conf. Computer Vision, Munich, Germany, 2018, pp. 815−833.
|
[31] |
R. G. Praveen, E. Granger, and P. Cardinal, “Deep weakly supervised domain adaptation for pain localization in videos,” in Proc. 15th IEEE Int. Conf. Automatic Face and Gesture Recognition, Buenos Aires, Argentina, 2020, pp. 473−480.
|
[32] |
L. L. Guo, S. R. Pfohl, J. Fries, A. E. W. Johnson, J. Posada, C. Aftandilian, N. Shah, and L. Sung, “Evaluation of domain generalization and adaptation on improving model robustness to temporal dataset shift in clinical medicine,” Sci. Rep., vol. 12, no. 1, p. 2726, Feb. 2022. doi: 10.1038/s41598-022-06484-1
|
[33] |
Y. F. Zhang, S. C. Niu, Z. Qiu, Y. Wei, P. L. Zhao, J. H. Yao, J. Z. Huang, Q. Y. Wu, and M. K. Tan, “COVID-DA: Deep domain adaptation from typical pneumonia to COVID-19,” arXiv preprint arXiv: 2005.01577, 2020.
|
[34] |
M. Kim and H. Byun, “Learning texture invariant representation for domain adaptation of semantic segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 12972−12981.
|
[35] |
W. J. Yan, Y. Y. Wang, S. J. Gu, L. Huang, F. H. Yan, L. M. Xia, and Q. Tao, “The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN,” in Proc. 22nd Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 2019, pp. 623−631.
|
[36] |
R. Argelaguet, D. Arnol, D. Bredikhin, Y. Deloro, B. Velten, J. C. Marioni, and O. Stegle, “MOFA+: A statistical framework for comprehensive integration of multi-modal single-cell data,” Genome Biol., vol. 21, no. 1, p. 111, May 2020. doi: 10.1186/s13059-020-02015-1
|
[37] |
J. L. Yang, N. C. Dvornek, F. Zhang, J. Chapiro, M. D. Lin, and J. S. Duncan, “Unsupervised domain adaptation via disentangled representations: Application to cross-modality liver segmentation,” in Proc. 22nd Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 2019, pp. 255−263.
|
[38] |
C. Chen, Q. Dou, H. Chen, J. Qin, and P. A. Heng, “Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation,” IEEE Trans. Med. Imaging, vol. 39, no. 7, pp. 2494–2505, Jul. 2020. doi: 10.1109/TMI.2020.2972701
|
[39] |
A. J. Larrazabal, N. Nieto, V. Peterson, D. H. Milone, and E. Ferrante, “Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis,” Proc. Natl. Acad. Sci. USA, vol. 117, no. 23, pp. 12592–12594, May 2020. doi: 10.1073/pnas.1919012117
|
[40] |
M. N. Du, F. Yang, N. Zou, and X. Hu, “Fairness in deep learning: A computational perspective,” IEEE Intell. Syst., vol. 36, no. 4, pp. 25–34, Jul.–Aug. 2021. doi: 10.1109/MIS.2020.3000681
|
[41] |
Y. Kim, D. Cho, K. Han, P. Panda, and S. Hong, “Domain adaptation without source data,” IEEE Trans. Artif. Intell., vol. 2, no. 6, pp. 508–518, Dec. 2021. doi: 10.1109/TAI.2021.3110179
|
[42] |
S. C. Zhao, B. Li, C. Reed, P. F. Xu, and K. Keutzer, “Multi-source domain adaptation in the deep learning era: A systematic survey,” arXiv preprint arXiv: 2002.12169, 2020.
|
[43] |
H. Wang, M. H. Xu, B. B. Ni, and W. J. Zhang, “Learning to combine: Knowledge aggregation for multi-source domain adaptation,” in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 727−744.
|
[44] |
S. C. Zhao, X. Y. Yue, S. H. Zhang, B. Li, H. Zhao, B. C. Wu, R. Krishna, J. E. Gonzalez, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and K. Keutzer, “A review of single-source deep unsupervised visual domain adaptation,” IEEE Trans. Neural Netw. Learning Syst., vol. 33, no. 2, pp. 473–493, Feb. 2022. doi: 10.1109/TNNLS.2020.3028503
|
[45] |
J. N. Kundu, N. Venkat, M. V. Rahul, and R. V. Babu, “Universal source-free domain adaptation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 4543−4552.
|
[46] |
Y. Liu, W. Zhang, and J. Wang, “Source-free domain adaptation for semantic segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Nashville, USA, 2021, pp. 1215−1224.
|
[47] |
A. Jiménez-Sánchez, M. Tardy, M. A. G. Ballester, D. Mateus, and G. Piella, “Memory-aware curriculum federated learning for breast cancer classification,” Comput. Methods Programs Biomed., vol. 229, p. 107318, Feb. 2023. doi: 10.1016/j.cmpb.2022.107318
|
[48] |
M. Jiménez-Guarneros and P. Gómez-Gil, “A study of the effects of negative transfer on deep unsupervised domain adaptation methods,” Expert Syst. Appl., vol. 167, p. 114088, Apr. 2021. doi: 10.1016/j.eswa.2020.114088
|
[49] |
L. T. Feng, F. Qian, X. He, Y. Q. Fan, H. P. Cai, and G. M. Hu, “Transitive transfer sparse coding for distant domain,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Toronto, Canada, 2021, pp. 3165−3169.
|
[50] |
M. Wang and W. H. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312, pp. 135–153, Oct. 2018. doi: 10.1016/j.neucom.2018.05.083
|
[51] |
M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko, W. L. Xu, D. Marcus, R. R. Colen, and S. Bakas, “Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data,” Sci. Rep., vol. 10, no. 1, p. 12598, Jul. 2020. doi: 10.1038/s41598-020-69250-1
|
[52] |
K. V. Sarma, S. Harmon, T. Sanford, H. R. Roth, Z. Y. Xu, J. Tetreault, D. G. Xu, M. G. Flores, A. G. Raman, R. Kulkarni, B. J. Wood, P. L. Choyke, A. M. Priester, L. S. Marks, S. S. Raman, D. Enzmann, B. Turkbey, W. Speier, and C. W. Arnold, “Federated learning improves site performance in multicenter deep learning without data sharing,” J. Am. Med. Inf. Assoc., vol. 28, no. 6, pp. 1259–1264, Jun. 2021. doi: 10.1093/jamia/ocaa341
|
[53] |
R. Kumar, A. A. Khan, J. Kumar, Zakria, N. A. Golilarz, S. M. Zhang, Y. Ting, C. Y. Zheng, and W. Y. Wang, “Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging,” IEEE Sens. J., vol. 21, no. 14, pp. 16301–16314, Jul. 2021. doi: 10.1109/JSEN.2021.3076767
|
[54] |
M. G. Crowson, D. Moukheiber, A. R. Arévalo, B. D. Lam, S. Mantena, A. Rana, D. Goss, D. W. Bates, and L. A. Celi, “A systematic review of federated learning applications for biomedical data,” PLOS Digit. Health, vol. 1, no. 5, p. e0000033, May 2022. doi: 10.1371/journal.pdig.0000033
|
[55] |
D. McGraw and K. D. Mandl, “Privacy protections to encourage use of health-relevant digital data in a learning health system,” NPJ Digit. Med., vol. 4, no. 1, p. 2, Jan. 2021. doi: 10.1038/s41746-020-00362-8
|
[56] |
C. H. Wu, F. Z. Wu, L. J. Lyu, Y. F. Huang, and X. Xie, “Communication-efficient federated learning via knowledge distillation,” Nat. Commun., vol. 13, no. 1, p. 2032, Apr. 2022. doi: 10.1038/s41467-022-29763-x
|
[57] |
L. Q. Qu, Y. Y. Zhou, P. P. Liang, Y. D. Xia, F. F. Wang, E. Adeli, L. Fei-Fei, and D. Rubin, “Rethinking architecture design for tackling data heterogeneity in federated learning,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, USA, 2022, pp. 10051−10061.
|
[58] |
G. J. Annas, “HIPAA regulations–A new era of medical-record privacy?” N. Engl. J. Med., vol. 348, pp. 1486–1490, Apr. 2003. doi: 10.1056/NEJMlim035027
|
[59] |
P. Voigt and A. Von dem Bussche, The EU General Data Protection Regulation (GDPR). A Practical Guide. Cham, Germany: Springer, 2017.
|
[60] |
S. Rajendran, J. S. Obeid, H. Binol, R. Jr. D’Agostino, K. Foley, W. Zhang, P. Austin, J. Brakefield, M. N. Gurcan, and U. Topaloglu, “Cloud-based federated learning implementation across medical centers,” JCO Clin. Cancer Inf., vol. 5, pp. 1–11, Jan. 2021.
|
[61] |
J. W. Kang, Z. H. Xiong, D. Niyato, Y. Z. Zou, Y. Zhang, and M. Guizani, “Reliable federated learning for mobile networks,” IEEE Wirel. Commun., vol. 27, no. 2, pp. 72–80, Apr. 2020. doi: 10.1109/MWC.001.1900119
|
[62] |
K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, B. McMahan, T. Van Overveldt, D. Petrou, D. Ramage, J. Roselander, “Towards federated learning at scale: System design,” in Proc. Machine Learning and Systems, Stanford, USA, 2019, pp. 374−388.
|
[63] |
T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020. doi: 10.1109/MSP.2020.2975749
|
[64] |
J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated learning for healthcare informatics,” J. Healthc. Inform. Res., vol. 5, no. 1, pp. 1–19, Nov. 2021. doi: 10.1007/s41666-020-00082-4
|
[65] |
Y. Zhao, M. Li, L. Z. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-IID data,” arXiv preprint arXiv: 1806.00582, 2018.
|
[66] |
A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning: A meta-learning approach,” arXiv preprint arXiv: 2002.07948, 2020.
|
[67] |
G. H. Lee and S. Y. Shin, “Federated learning on clinical benchmark data: Performance assessment,” J. Med. Internet Res., vol. 22, no. 10, p. e20891, Oct. 2020. doi: 10.2196/20891
|
[68] |
H. R. Roth, K. Chang, P. Singh, N. Neumark, W. Q. Li, V. Gupta, S. Gupta, L. Q. Qu, A. Ihsani, B. C. Bizzo, Y. H. Wen, V. Buch, M. Shah, F. Kitamura, M. Mendonça, V. Lavor, A. Harouni, C. Compas, J. Tetreault, P. Dogra, Y. Cheng, S. Erdal, R. White, B. Hashemian, T. Schultz, M. Zhang, A. McCarthy, B. M. Yun, E. Sharaf, K. V. Hoebel, J. B. Patel, B. Chen, S. Ko, E. Leibovitz, E. D. Pisano, L. Coombs, D. G. Xu, K. J. Dreyer, I. Dayan, R. C. Naidu, M. Flores, D. Rubin, and J. Kalpathy-Cramer, “Federated learning for breast density classification: A real-world implementation,” in Proc. 2nd MICCAI Workshop on Domain Adaptation and Representation Transfer, Lima, Peru, 2020, pp. 181−191.
|
[69] |
G. Joshi, A. Srivastava, B. Yagnik, M. Hasan, Z. Saiyed, L. A. Gabralla, A. Abraham, R. Walambe, and K. Kotecha, “Explainable misinformation detection across multiple social media platforms,” arXiv preprint arXiv: 2203.11724, 2022.
|
[70] |
A. Raza, K. P. Tran, L. Koehl, and S. J. Li, “Designing ECG monitoring healthcare system with federated transfer learning and explainable AI,” Knowl.-Based Syst., vol. 236, p. 107763, Jan. 2022. doi: 10.1016/j.knosys.2021.107763
|
[71] |
X. C. Peng, Z. J. Huang, Y. Z. Zhu, and K. Saenko, “Federated adversarial domain adaptation,” in Proc. 8th Int. Conf. Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[72] |
X. X. Li, Y. F. Gu, N. Dvornek, L. H. Staib, P. Ventola, and J. S. Duncan, “Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results,” Med. Image Anal., vol. 65, p. 101765, Oct. 2020. doi: 10.1016/j.media.2020.101765
|
[73] |
A. Holzinger, A. Saranti, C. Molnar, P. Biecek, and W. Samek, “Explainable AI methods-a brief overview,” in Proc. Int. Workshop on Extending Explainable AI Beyond Deep Models and Classifiers, Vienna, Austria, 2022, pp. 13−38.
|
[74] |
J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all convolutional net,” in Proc. 3rd Int. Conf. Learning Representations, San Diego, USA, 2015.
|
[75] |
S. Heidarian, P. Afshar, N. Enshaei, F. Naderkhani, M. J. Rafiee, F. B. Fard, K. Samimi, S. F. Atashzar, A. Oikonomou, K. N. Plataniotis, and A. Mohammadi, “COVID-FACT: A fully-automated capsule network-based framework for identification of COVID-19 cases from chest CT scans,” Front. Artif. Intell., vol. 4, p. 598932, Feb. 2021. doi: 10.3389/frai.2021.598932
|
[76] |
A. Chaddad, M. L. Zhang, C. Desrosiers, and T. Niazi, “Deep radiomic features from MRI scans predict survival outcome of recurrent glioblastoma,” in Proc. 1st Int. Workshop on Radiomics and Radiogenomics in Neuro-Oncology, Shenzhen, China, 2019, pp. 36−43.
|
[77] |
A. Chaddad, C. Desrosiers, B. Abdulkarim, and T. Niazi, “Predicting the gene status and survival outcome of lower grade glioma patients with multimodal MRI features,” IEEE Access, vol. 7, pp. 75976–75984, Jun. 2019. doi: 10.1109/ACCESS.2019.2920396
|
[78] |
A. Chaddad, P. Sargos, and C. Desrosiers, “Modeling texture in deep 3D CNN for survival analysis,” IEEE J. Biomed. Health Inform., vol. 25, no. 7, pp. 2454–2462, Jul. 2021. doi: 10.1109/JBHI.2020.3025901
|
[79] |
A. Chaddad, M. L. Zhang, L. Hassan, and T. Niazi, “Modeling of textures to predict immune cell status and survival of brain tumour patients,” in Proc. IEEE 18th Int. Symp. Biomedical Imaging, Nice, France, 2021, pp. 1067−1071.
|
[80] |
A. Chaddad, L. Hassan, and C. Desrosiers, “Deep radiomic analysis for predicting coronavirus disease 2019 in computerized tomography and X-ray images,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 1, pp. 3–11, Jan. 2022. doi: 10.1109/TNNLS.2021.3119071
|
[81] |
A. Chaddad, P. Daniel, M. L. Zhang, S. Rathore, P. Sargos, C. Desrosiers, and T. Niazi, “Deep radiomic signature with immune cell markers predicts the survival of glioma patients,” Neurocomputing, vol. 469, pp. 366–375, Jan. 2022. doi: 10.1016/j.neucom.2020.10.117
|
[82] |
S. K. Yeom, P. Seegerer, S. Lapuschkin, A. Binder, S. Wiedemann, K. R. Müller, and W. Samek, “Pruning by explaining: A novel criterion for deep neural network pruning,” Pattern Recognit., vol. 115, p. 107899, Jul. 2021. doi: 10.1016/j.patcog.2021.107899
|
[83] |
J. B. Li, C. Q. Zhang, J. T. Zhou, H. Z. Fu, S. Y. Xia, and Q. H. Hu, “Deep-LIFT: Deep label-specific feature learning for image annotation,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 7732–7741, Aug. 2022. doi: 10.1109/TCYB.2021.3049630
|
[84] |
A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features through propagating activation differences,” in Proc. 34th Int. Conf. Machine Learning, Sydney, Australia, 2017, pp. 3145−3153.
|
[85] |
M. Lin, Q. Chen, and S. C. Yan, “Network in network,” arXiv preprint arXiv: 1312.4400, 2013.
|
[86] |
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based localization,” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 618−626.
|
[87] |
H. F. Wang, Z. F. Wang, M. N. Du, F. Yang, Z. J. Zhang, S. R. Ding, P. Mardziel, and X. Hu, “Score-CAM: Score-weighted visual explanations for convolutional neural networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020, pp. 111−119.
|
[88] |
R. Dazeley, P. Vamplew, C. Foale, C. Young, S. Aryal, and F. Cruz, “Levels of explainable artificial intelligence for human-aligned conversational explanations,” Artif. Intell., vol. 299, p. 103525, Oct. 2021. doi: 10.1016/j.artint.2021.103525
|
[89] |
J. Jiménez-Luna, M. Skalic, N. Weskamp, and G. Schneider, “Coloring molecules with explainable artificial intelligence for preclinical relevance assessment,” J. Chem. Inf. Model., vol. 61, no. 3, pp. 1083–1094, Feb. 2021. doi: 10.1021/acs.jcim.0c01344
|
[90] |
S. El-Sappagh, J. M. Alonso, S. M. R. Islam, A. M. Sultan, and K. S. Kwak, “A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease,” Sci. Rep., vol. 11, no. 1, p. 2660, Jan. 2021. doi: 10.1038/s41598-021-82098-3
|
[91] |
J. F. Peng, K. Q. Zou, M. Zhou, Y. Teng, X. Y. Zhu, F. F. Zhang, and J. Xu, “An explainable artificial intelligence framework for the deterioration risk prediction of hepatitis patients,” J. Med. Syst., vol. 45, no. 5, p. 61, Apr. 2021. doi: 10.1007/s10916-021-01736-5
|
[92] |
K. Davagdorj, J. W. Bae, V. H. Pham, N. Theera-Umpon, and K. H. Ryu, “Explainable artificial intelligence based framework for non-communicable diseases prediction,” IEEE Access, vol. 9, pp. 123672–123688, Sept. 2021. doi: 10.1109/ACCESS.2021.3110336
|
[93] |
C. Dindorf, J. Konradi, C. Wolf, B. Taetz, G. Bleser, J. Huthwelker, F. Werthmann, E. Bartaguiz, J. Kniepert, P. Drees, U. Betz, and M. Fröhlich, “Classification and automated interpretation of spinal posture data using a pathology-independent classifier and explainable artificial intelligence (XAI),” Sensors, vol. 21, no. 18, p. 6323, Sept. 2021. doi: 10.3390/s21186323
|
[94] |
Z. Papanastasopoulos, R. K. Samala, H. P. Chan, L. Hadjiiski, C. Paramagul, M. A. Helvie, and C. H. Neal, “Explainable AI for medical imaging: Deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI,” in Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, Houston, Texas, United States, pp. 113140Z.
|
[95] |
R. K. Singh, R. Pandey, and R. N. Babu, “COVIDScreen: Explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays,” Neural Comput. Appl., vol. 33, no. 14, pp. 8871–8892, Jan. 2021. doi: 10.1007/s00521-020-05636-6
|
[96] |
H. C. Thorsen-Meyer, A. B. Nielsen, A. P. Nielsen, B. S. Kaas-Hansen, P. Toft, J. Schierbeck, T. Strøm, P. J. Chmura, M. Heimann, L. Dybdahl, L. Spangsege, P. Hulsen, K. Belling, S. Brunak, and A. Perner, “Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: A retrospective study of high-frequency data in electronic patient records,” Lancet Digit. Health, vol. 2, no. 4, pp. e179–e191, Apr. 2020. doi: 10.1016/S2589-7500(20)30018-2
|
[97] |
R. Gu, G. T. Wang, T. Song, R. Huang, M. Aertsen, J. Deprest, S. Ourselin, T. Vercauteren, and S. T. Zhang, “CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation,” IEEE Trans. Med. Imaging, vol. 40, no. 2, pp. 699–711, Feb. 2021. doi: 10.1109/TMI.2020.3035253
|
[98] |
P. R. Magesh, R. D. Myloth, and R. J. Tom, “An explainable machine learning model for early detection of Parkinson’s disease using LIME on DaTSCAN imagery,” Comput. Biol. Med., vol. 126, p. 104041, Nov. 2020. doi: 10.1016/j.compbiomed.2020.104041
|
[99] |
R. Karim, T. Döhmen, M. Cochez, O. Beyan, D. Rebholz-Schuhmann, and S. Decker, “DeepCOVIDExplainer: Explainable COVID-19 diagnosis from chest X-ray images,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Seoul, Korea (South), 2020, pp. 1034−1037.
|
[100] |
L. A. Jr. de Souza, R. Mendel, S. Strasser, A. Ebigbo, A. Probst, H. Messmann, J. P. Papa, and C. Palm, “Convolutional neural networks for the evaluation of cancer in Barrett’s esophagus: Explainable AI to lighten up the black-box,” Comput. Biol. Med., vol. 135, p. 104578, Aug. 2021. doi: 10.1016/j.compbiomed.2021.104578
|
[101] |
T. Dissanayake, T. Fernando, S. Denman, S. Sridharan, H. Ghaemmaghami, and C. Fookes, “A robust interpretable deep learning classifier for heart anomaly detection without segmentation,” IEEE J. Biomed. Health Inform., vol. 25, no. 6, pp. 2162–2171, Jun. 2021. doi: 10.1109/JBHI.2020.3027910
|
[102] |
M. Razzaq, L. Goumidi, M. J. Iglesias, G. Munsch, M. Bruzelius, M. Ibrahim-Kosta, L. Butler, J. Odeberg, P. E. Morange, and D. A. Tregouet, “Explainable artificial neural network for recurrent venous thromboembolism based on plasma proteomics,” in Proc. 19th Int. Conf. Computational Methods in Systems Biology, Bordeaux, France, 2021, pp. 108−121.
|
[103] |
M. La Ferla, M. Montebello, and D. Seychell, “An XAI approach to deep learning models in the detection of ductal carcinoma in situ,” arXiv preprint arXiv: 2106.14186, 2021.
|
[104] |
C. Gillmann, L. Peter, C. Schmidt, D. Saur, and G. Scheuermann, “Visualizing multimodal deep learning for lesion prediction,” IEEE Comput. Graph. Appl., vol. 41, no. 5, pp. 90–98, Sep.–Oct. 2021. doi: 10.1109/MCG.2021.3099881
|
[105] |
C. Ieracitano, N. Mammone, M. Versaci, G. Varone, A. R. Ali, A. Armentano, G. Calabrese, A. Ferrarelli, L. Turano, C. Tebala, Z. Hussain, Z. Sheikh, A. Sheikh, G. Sceni, A. Hussain, and F. C. Morabito, “A fuzzy-enhanced deep learning approach for early detection of COVID-19 pneumonia from portable chest X-ray images,” Neurocomputing, vol. 481, pp. 202–215, Apr. 2022. doi: 10.1016/j.neucom.2022.01.055
|
[106] |
J. M. Mayor-Torres, S. Medina-DeVilliers, T. Clarkson, M. D. Lerner, and G. Riccardi, “Evaluation of interpretability for deep learning algorithms in EEG emotion recognition: A case study in autism,” arXiv preprint arXiv: 2111.13208, 2021.
|
[107] |
K. H. Kim, H. W. Koo, B. J. Lee, S. W. Yoon, and M. J. Sohn, “Cerebral hemorrhage detection and localization with medical imaging for cerebrovascular disease diagnosis and treatment using explainable deep learning,” J. Korean Phys. Soc., vol. 79, no. 3, pp. 321–327, May 2021. doi: 10.1007/s40042-021-00202-2
|
[108] |
R. Arefin, M. D. Samad, F. A. Akyelken, and A. Davanian, “Non-transfer deep learning of optical coherence tomography for post-hoc explanation of macular disease classification,” in Proc. IEEE 9th Int. Conf. Healthcare Informatics, Victoria, Canada, 2021, pp. 48−52.
|
[109] |
R. T. Sutton, O. R. Zaïane, R. Goebel, and D. C. Baumgart, “Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images,” Sci. Rep., vol. 12, no. 1, p. 2748, Feb. 2022. doi: 10.1038/s41598-022-06726-2
|
[110] |
D. H. Chen, H. J. Zhao, J. R. He, Q. Pan, and W. L. Zhao, “An causal XAI diagnostic model for breast cancer based on mammography reports,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Houston, USA, 2021, pp. 3341−3349.
|
[111] |
Z. Uddin, K. K. Dysthe, A. Følstad, and P. B. Brandtzaeg, “Deep learning for prediction of depressive symptoms in a large textual dataset,” Neural Comput. Appl., vol. 34, no. 1, pp. 721–744, Jan. 2022. doi: 10.1007/s00521-021-06426-4
|
[112] |
S. Martínez-Agüero, C. Soguero-Ruiz, J. M. Alonso-Moral, I. Mora-Jiménez, J. Álvarez-Rodríguez, and A. G. Marques, “Interpretable clinical time-series modeling with intelligent feature selection for early prediction of antimicrobial multidrug resistance,” Future Gener. Comput. Syst., vol. 133, pp. 68–83, Aug. 2022. doi: 10.1016/j.future.2022.02.021
|
[113] |
K. Wickstrøm, K. Ø. Mikalsen, M. Kampffmeyer, A. Revhaug, and R. Jenssen, “Uncertainty-aware deep ensembles for reliable and explainable predictions of clinical time series,” IEEE J. Biomed. Health Inform., vol. 25, no. 7, pp. 2435–2444, Jul. 2021. doi: 10.1109/JBHI.2020.3042637
|
[114] |
C. Y. Wang, T. S. Ko, and C. C. Hsu, “Machine learning with explainable artificial intelligence vision for characterization of solution conductivity using optical emission spectroscopy of plasma in aqueous solution,” Plasma Process. Polym., vol. 18, no. 12, p. 2100096, Dec. 2021. doi: 10.1002/ppap.202100096
|
[115] |
Y. G. Akhlaghi, K. Aslansefat, X. D. Zhao, S. Sadati, A. Badiei, X. Xiao, S. Shittu, Y. Fan, and X. L. Ma, “Hourly performance forecast of a dew point cooler using explainable artificial intelligence and evolutionary optimisations by 2050,” Appl. Energy, vol. 281, p. 116062, Jan. 2021. doi: 10.1016/j.apenergy.2020.116062
|
[116] |
J. M. Valverde, V. Imani, A. Abdollahzadeh, R. De Feo, M. Prakash, R. Ciszek, and J. Tohka, “Transfer learning in magnetic resonance brain imaging: A systematic review,” J. Imaging, vol. 7, no. 4, p. 66, Apr. 2021. doi: 10.3390/jimaging7040066
|
[117] |
A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief review of domain adaptation,” in Advances in Data Science and Information Engineering, R. Stahlbock, G. M. Weiss, M. Abou-Nasr, C. Y. Yang, H. R. Arabnia, and L. Deligiannidis, Eds. Cham, Germany: Springer, 2021, pp. 877−894.
|
[118] |
D. N. Liu, D. H. Zhang, Y. Song, F. Zhang, L. O’Donnell, H. Huang, M. Chen, and W. D. Cai, “Unsupervised instance segmentation in microscopy images via panoptic domain adaptation and task re-weighting,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 4242−4251.
|
[119] |
A. Choudhary, L. Tong, Y. D. Zhu, and M. D. Wang, “Advancing medical imaging informatics by deep learning-based domain adaptation,” Yearb. Med. Inform., vol. 29, no. 1, pp. 129–138, Aug. 2020. doi: 10.1055/s-0040-1702009
|
[120] |
S. T. Niu, Y. H. Hu, J. Wang, Y. X. Liu, and H. B. Song, “Feature-based distant domain transfer learning,” in Proc. IEEE Int. Conf. Big Data, Atlanta, USA, 2020, pp. 5164−5171.
|
[121] |
Y. Yang, J. Guo, Q. W. Ye, Y. L. Xia, P. Yang, A. Ullah, and K. Muhammad, “A weighted multi-feature transfer learning framework for intelligent medical decision making,” Appl. Soft Comput., vol. 105, p. 107242, Jul. 2021. doi: 10.1016/j.asoc.2021.107242
|
[122] |
A. Ackaouy, N. Courty, E. Vallée, O. Commowick, C. Barillot, and F. Galassi, “Unsupervised domain adaptation with optimal transport in multi-site segmentation of multiple sclerosis lesions from MRI data,” Front. Comput. Neurosci., vol. l, no. 14, p. 19, Mar. 2020.
|
[123] |
X. J. Ma, Y. H. Niu, L. Gu, Y. S. Wang, Y. T. Zhao, J. Bailey, and F. Lu, “Understanding adversarial attacks on deep learning based medical image analysis systems,” Pattern Recognit., vol. 110, p. 107332, Feb. 2021. doi: 10.1016/j.patcog.2020.107332
|
[124] |
Y. Z. Sun, G. Yang, D. Y. Ding, G. W. Cheng, J. P. Xu, and X. Ro. Li, “A GAN-based domain adaptation method for glaucoma diagnosis,” in Proc. Int. Joint Conf. Neural Networks, Glasgow, UK, 2020, pp. 1−8.
|
[125] |
C. M. He, S. M. Wang, H. Y. Kang, L. Q. Zheng, T. F. Tan, and X. J. Fan, “Adversarial domain adaptation network for tumor image diagnosis,” Int. J. Approx. Reason., vol. 135, pp. 38–52, Aug. 2021. doi: 10.1016/j.ijar.2021.04.010
|
[126] |
G. J. Wang, M. Chen, Z. J. Ding, J. W. Li, H. Z. Yang, and P. Zhang, “Inter-patient ECG arrhythmia heartbeat classification based on unsupervised domain adaptation,” Neurocomputing, vol. 454, pp. 339–349, Sept. 2021. doi: 10.1016/j.neucom.2021.04.104
|
[127] |
E. Lee, A. Ho, Y. T. Wang, C. H. Huang, and C. Y. Lee, “Cross-domain adaptation for biometric identification using photoplethysmogram,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 1289−1293.
|
[128] |
X. S. Bian, X. B. Luo, C. Wang, W. Q. Liu, and X. H. Lin, “DDA-Net: Unsupervised cross-modality medical image segmentation via dual domain adaptation,” Comput. Methods Programs Biomed., vol. 213, p. 106531, Jan. 2022. doi: 10.1016/j.cmpb.2021.106531
|
[129] |
Q. Dou, C. Ouyang, C. Chen, H. Chen, B. Glocker, X. H. Zhuang, and P. A. Heng, “PnP-AdaNet: Plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation,” IEEE Access, vol. 7, pp. 99065–99076, Jul. 2019. doi: 10.1109/ACCESS.2019.2929258
|
[130] |
H. Guan, L. Wang, and M. X. Liu, “Multi-source domain adaptation via optimal transport for brain dementia identification,” in Proc. IEEE 18th Int. Symp. Biomedical Imaging, Nice, France, 2021, pp. 1514−1517.
|
[131] |
H. Guan, Y. B. Liu, E. K. Yang, P. T. Yap, D. G. Shen, and M. X. Liu, “Multi-site MRI harmonization via attention-guided deep domain adaptation for brain disorder identification,” Med. Image Anal., vol. 71, p. 102076, Jul. 2021. doi: 10.1016/j.media.2021.102076
|
[132] |
J. Wang, L. C. Zhang, Q. Wang, L. Chen, J. Shi, X. B. Chen, Z. Y. Li, and D. G. Shen, “Multi-class ASD classification based on functional connectivity and functional correlation tensor via multi-source domain adaptation and multi-view sparse representation,” IEEE Trans. Med. Imaging, vol. 39, no. 10, pp. 3137–3147, Oct. 2020. doi: 10.1109/TMI.2020.2987817
|
[133] |
H. F. Cui, C. Yuwen, J. Lei, Y. Xia, and Y. N. Zhang, “Bidirectional cross-modality unsupervised domain adaptation using generative adversarial networks for cardiac image segmentation,” Comput. Biol. Med., vol. 136, p. 104726, Sept. 2021. doi: 10.1016/j.compbiomed.2021.104726
|
[134] |
R. Xu, Z. Cong, X. C. Ye, S. Kido, and N. Tomiyama, “Unsupervised content-preserved adaptation network for classification of pulmonary textures from different CT scanners,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020, pp. 1060−1064.
|
[135] |
P. Wang, P. F. Li, Y. M. Li, J. Xu, and M. F. Jiang, “Classification of histopathological whole slide images based on multiple weighted semi-supervised domain adaptation,” Biomed. Signal Process. Control, vol. 73, p. 103400, Mar. 2022. doi: 10.1016/j.bspc.2021.103400
|
[136] |
Y. Wang, Y. Q. Feng, L. Zhang, Z. Z. Wang, Q. Lv, and Z. Yi, “Deep adversarial domain adaptation for breast cancer screening from mammograms,” Med. Image Anal., vol. 73, p. 102147, Oct. 2021. doi: 10.1016/j.media.2021.102147
|
[137] |
J. Li, C. L. Feng, X. Z. Lin, and X. H. Qian, “Utilizing GCN and meta-learning strategy in unsupervised domain adaptation for pancreatic cancer segmentation,” IEEE J. Biomed. Health Inform., vol. 26, no. 1, pp. 79–89, Jan. 2022. doi: 10.1109/JBHI.2021.3085092
|
[138] |
M. Saiz-Vivó, A. Colomer, C. Fonfría, L. Martí-Bonmatí, and V. Naranjo, “Supervised domain adaptation for automated semantic segmentation of the atrial cavity,” Entropy, vol. 23, no. 7, p. 898, Jul. 2021. doi: 10.3390/e23070898
|
[139] |
I. Dayan, H. R. Roth, A. X. Zhong, A. Harouni, A. Gentili, A. Z. Abidin, A. Liu, A. B. Costa, B. J. Wood, C. S. Tsai, C. H. Wang, C. N. Hsu, C. K. Lee, P. Y. Ruan, D. G. Xu, D. F. Wu, E. Huang, F. C. Kitamura, G. Lacey, G. C. de Antônio Corradi, G. Nino, H. H. Shin, H. Obinata, H. Ren, J. C. Crane, J. Tetreault, J. H. Guan, J. W. Garrett, J. D. Kaggie, J. G. Park, K. Dreyer, K. Juluru, K. Kersten, M. A. B. C. Rockenbach, M. G. Linguraru, M. A. Haider, M. AbdelMaseeh, N. Rieke, P. F. Damasceno, P. M. C. e Silva, P. C. Wang, S. Xu, S. Kawano, S. Sriswasdi, S. Y. Park, T. M. Grist, V. Buch, W. Jantarabenjakul, W. Wang, W. Y. Tak, X. Li, X. H. Lin, Y. J. Kwon, A. Quraini, A. Feng, A. N. Priest, B. Turkbey, B. Glicksberg, B. Bizzo, B. S. Kim, C. Tor-Díez, C. C. Lee, C. J. Hsu, C. N. Lin, C. L. Lai, C. P. Hess, C. Compas, D. Bhatia, E. K. Oermann, E. Leibovitz, H. Sasaki, H. Mori, I. Yang, J. H. Sohn, K. N. K. Murthy, L. C. Fu, M. R. F. de Mendonça, M. Fralick, M. K. Kang, M. Adil, N. Gangai, P. Vateekul, P. Elnajjar, S. Hickman, S. Majumdar, S. L. McLeod, S. Reed, S. Gräf, S. Harmon, T. Kodama, T. Puthanakit, T. Mazzulli, V. L. de Lavor, Y. Rakvongthai, Y. R. Lee, Y. H. Wen, F. J. Gilbert, M. G. Flores, and Q. Z. Li, “Federated learning for predicting clinical outcomes in patients with COVID-19,” Nat. Med., vol. 27, no. 10, pp. 1735–1743, Oct. 2021. doi: 10.1038/s41591-021-01506-3
|
[140] |
S. Boughorbel, F. Jarray, N. Venugopal, S. Moosa, H. Elhadi, and M. Makhlouf, “Federated uncertainty-aware learning for distributed hospital EHR data,” arXiv preprint arXiv: 1910.12191, 2019.
|
[141] |
C. X. Tian, H. L. Li, Y. F. Wang, and S. Q. Wang, “Privacy-preserving constrained domain generalization for medical image classification,” arXiv preprint arXiv: 2105.08511, 2021.
|
[142] |
M. Nasajpour, M. Karakaya, S. Pouriyeh, and R. M. Parizi, “Federated transfer learning for diabetic retinopathy detection using CNN architectures,” in Proc. SoutheastCon, Mobile, USA, 2022, pp. 655−660.
|
[143] |
A. Vaid, S. K. Jaladanki, J. Xu, S. Teng, A. Kumar, S. Lee, S. Somani, I. Paranjpe, J. K. De Freitas, T. Y. Wanyan, Wanyan, K. W. Johnson, M. Bicak, E. Klang, Y. J. Kwon, A. Costa, S. Zhao, R. Miotto, A. W. Charney, E. Böttinger, Z. A. Fayad, G. N. Nadkarni, F. Wang, and B. S. Glicksberg, “Federated learning of electronic health records to improve mortality prediction in hospitalized patients with COVID-19: Machine learning approach,” JMIR Med. Inform., vol. 9, no. 1, p. e24207, Jan. 2021. doi: 10.2196/24207
|
[144] |
P. F. Guo, P. Y. Wang, J. Y. Zhou, S. S. Jiang, and V. M. Patel, “Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Nashville, USA, 2021, pp. 2423−2432.
|
[145] |
M. Y. Lu, R. J. Chen, D. H. Kong, J. Lipkova, R. Singh, D. F. K. Williamson, T. Y. Chen, and F. Mahmood, “Federated learning for computational pathology on gigapixel whole slide images,” Med. Image Anal., vol. 76, p. 102298, Feb. 2022. doi: 10.1016/j.media.2021.102298
|
[146] |
M. Flores, I. Dayan, H. Roth, A. X. Zhong, A. Harouni, A. Gentili, A. Abidin, A. Liu, A. Costa, B. Wood, C. S. Tsai, C. H. Wang, C. N. Hsu, C. K. Lee, C. Ruan, D. G. Xu, D. F. Wu, E. Huang, F. Kitamura, G. Lacey, G. C. de AntÔnio Corradi, H. H. Shin, H. Obinata, H. Ren, J. Crane, J. Tetreault, J. H. Guan, J. Garrett, J. G. Park, K. Dreyer, K. Juluru, K. Kersten, M. A. B. C. Rockenbach, M. Linguraru, M. Haider, M. AbdelMaseeh, N. Rieke, P. Damasceno, P. M. C. e Silva, P. Wang, S. Xu, S C. Kawano, S. Sriswasdi, S. Y. Park, T. Grist, V. Buch, W. Jantarabenjakul, W. Wang, W. Y. Tak, X. Li, X. H. Lin, F. Kwon, F. Gilbert, J. Kaggie, Q. Z. Li, A. Quraini, A. Feng, A. Priest, B. Turkbey, B. Glicksberg, B. Bizzo, B. S. Kim, C. Tor-Diez, C. C. Lee, C. J. Hsu, C. Lin, C. L. Lai, C. Hess, C. Compas, D. Bhatia, E. Oermann, E. Leibovitz, H. Sasaki, H. Mori, I. Yang, J. H. Sohn, K. N. K. Murthy, L C. Fu, M. R. F. de Mendonça, M. Fralick, M. K. Kang, M. Adil, N. Gangai, P. Vateekul, P. Elnajjar, S. Hickman, S. Majumdar, S. McLeod, S. Reed, S. Graf, S. Harmon, T. Kodama, T. Puthanakit, T. Mazzulli, V. de Lima Lavor, Y. Rakvongthai, Y. R. Lee, Y. H. Wen, “Federated learning used for predicting outcomes in SARS-COV-2 patients,” Res. Sq., DOI: 10.21203/rs.3.rs-126892/v1
|
[147] |
B. L. Y. Agbley, J. P. Li, A. U. Haq, E. K. Bankas, S. Ahmad, I. O. Agyemang, D. Kulevome, W. D. Ndiaye, B. Cobbinah, and S. Latipova, “Multimodal melanoma detection with federated learning,” in Proc. 18th Int. Computer Conf. Wavelet Active Media Technology and Information Processing, Chengdu, China, 2021, pp. 238−244.
|
[148] |
M. F. Zhang, Y. N. Wang, and T. Luo, “Federated learning for arrhythmia detection of Non-IID ECG,” in Proc. IEEE 6th Int. Conf. Computer and Communications, Chengdu, China, 2020, pp. 1176−1180.
|
[149] |
Y. C. Gu, Q. Q. Hu, X. L. Wang, Z. Zhou, and S. X. Lu, “FedACS: An efficient federated learning method among multiple medical institutions with adaptive client sampling,” in Proc. 14th Int. Congr. Image and Signal Processing, BioMedical Engineering and Informatics, Shanghai, China, 2021, pp. 1−6.
|
[150] |
Y. Kang, Y. Liu, and T. J. Chen, “FedMVT: Semi-supervised vertical federated learning with MultiView training,” arXiv preprint arXiv: 2008.10838, 2020.
|
[151] |
W. H. Sun, Y. Q. Chen, X. D. Yang, J. B. Cao, and Y. X. Song, “FedIO: Bridge inner-and outer-hospital information for perioperative complications prognostic prediction via federated learning,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, Houston, USA, 2021, pp. 3215−3221.
|
[152] |
A. Linardos, K. Kushibar, S. Walsh, P. Gkontra, and K. Lekadir, “Federated learning for multi-center imaging diagnostics: A simulation study in cardiovascular disease,” Sci. Rep., vol. 12, no. 1, p. 3551, Mar. 2022. doi: 10.1038/s41598-022-07186-4
|
[153] |
N. Q. Dong and I. Voiculescu, “Federated contrastive learning for decentralized unlabeled medical images,” in Proc. 24th Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 2021, pp. 378−387.
|
[154] |
Q. Yang, Y. Liu, T. J. Chen, and Y. X. Tong, “Federated machine learning: Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, p. 12, Mar. 2019.
|
[155] |
J. Lo, T. T. Yu, D. Ma, P. X. Zang, J. P. Owen, Q. Q. Zhang, R. K. Wang, M. F. Beg, A. Y. Lee, Y. L. Jia, and M. V. Sarunic, “Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data,” Ophthalmol. Sci., vol. 1, no. 4, p. 100069, Dec. 2021. doi: 10.1016/j.xops.2021.100069
|
[156] |
B. Gu, A. Xu, Z. Y. Huo, C. Deng, and H. Huang, “Privacy-preserving asynchronous vertical federated learning algorithms for multiparty collaborative learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11, pp. 6103–6115, Nov. 2022. doi: 10.1109/TNNLS.2021.3072238
|
[157] |
Y. Liu, Y. Kang, C. P. Xing, T. J. Chen, and Q. Yang, “A secure federated transfer learning framework,” IEEE Intell. Syst., vol. 35, no. 4, pp. 70–82, Jul.–Aug. 2020. doi: 10.1109/MIS.2020.2988525
|
[158] |
S. Li, T. X. Cai, and R. Duan, “Targeting underrepresented populations in precision medicine: A federated transfer learning approach,” arXiv preprint arXiv: 2108.12112, 2021.
|
[159] |
T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” in Proc. Machine Learning and Systems, Austin, USA, 2020, pp. 429−450.
|
[160] |
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Proc. 20th Int. Conf. Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017, pp. 1273−1282.
|
[161] |
S. U. Stich, “Local SGD converges fast and communicates little,” in Proc. 7th Int. Conf. Learning Representations, New Orleans, LA, USA, May, 2019.
|
[162] |
F. Sattler, K. R. Müller, and W. Samek, “Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3710–3722, Aug. 2021. doi: 10.1109/TNNLS.2020.3015958
|
[163] |
O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal, “Federated multi-task learning under a mixture of distributions,” in Proc. 35th Advances in Neural Information Processing Systems, 2021, pp. 15434−15447.
|
[164] |
A. C. Hauschild, M. Lemanczyk, J. Matschinske, T. Frisch, O. Zolotareva, A. Holzinger, J. Baumbach, and D. Heider, “Federated random forests can improve local performance of predictive models for various healthcare applications,” Bioinformatics, vol. 38, no. 8, pp. 2278–2286, Apr. 2022. doi: 10.1093/bioinformatics/btac065
|
[165] |
A. Chowdhury, H. Kassem, N. Padoy, R. Umeton, and A. Karargyris, “A review of medical federated learning: Applications in oncology and cancer research,” in Proc. 7th Int. MICCAI Brainlesion Workshop, 2022, pp. 3−24.
|
[166] |
J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 248−255.
|
[167] |
Y. Otaki, A. Singh, P. Kavanagh, R. J. H. Miller, T. Parekh, B. K. Tamarappoo, T. Sharir, A. J. Einstein, M. B. Fish, T. D. Ruddy, P. A. Kaufmann, A. J. Sinusas, E. J. Miller, T. M. Bateman, S. Dorbala, M. Di Carli, S. Cadet, J. X. Liang, D. Dey, D. S. Berman, and P. J. Slomka, “Clinical deployment of explainable artificial intelligence of SPECT for diagnosis of coronary artery disease,” in JACC: Cardiovasc. Imaging, vol. 15, no. 6, pp. 1091−1102, Jun. 2022.
|
[168] |
W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. T. Jiao, Y. C. Liang, Q. Yang, D. Niyato, and C. Y. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Commun. Surv. Tut., vol. 22, no. 3, pp. 2031–2063, 2020. doi: 10.1109/COMST.2020.2986024
|
[169] |
H. Guan and M. X. Liu, “Domain adaptation for medical image analysis: A survey,” IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 1173–1185, Mar. 2022.
|
[170] |
W. W. Zhang, F. Wang, Y. Jiang, Z. F. Xu, S. C. Wu, and Y. H. Zhang, “Cross-subject EEG-based emotion recognition with deep domain confusion,” in Proc. 12th Int. Conf. Intelligent Robotics and Applications, Shenyang, China, 2019, pp. 558−570.
|
[171] |
S. T. Niu, M. Liu, Y. X. Liu, J. Wang, and H. B. Song, “Distant domain transfer learning for medical imaging,” IEEE J. Biomed. Health Inform., vol. 25, no. 10, pp. 3784–3793, Oct. 2021. doi: 10.1109/JBHI.2021.3051470
|
[172] |
C. Chen, Q. Dou, H. Chen, J. Qin, and P. A. Heng, “Synergistic image and feature adaptation: Towards cross-modality domain adaptation for medical image segmentation,” in Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1, pp. 865–872, Jul. 2019.
|
[173] |
M. Meng, J. H. Hu, Y. Y. Gao, W. Z. Kong, and Z. Z. Luo, “A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition,” Biomed. Signal Process. Control, vol. 78, p. 103873, Sept. 2022. doi: 10.1016/j.bspc.2022.103873
|
[174] |
Z. K. Tian, D. H. Li, Y. Yang, F. Z. Hou, Z. Y. Yang, Y. Song, and Q. Gao, “A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition,” IEEE J. Biomed. Health Inform., vol. 27, no. 1, pp. 363–373, Jan. 2023. doi: 10.1109/JBHI.2022.3212475
|
[175] |
V. M. Bashyam, J. Doshi, G. Erus, D. Srinivasan, A. Abdulkadir, A. Singh, M. Habes, Y. Fan, C. L. Masters, P. Maruff, C. J. Zhuo, H. Völzke, S. C. Johnson, J. Fripp, N. Koutsouleris, T. D. Satterthwaite, D. H. Wolf, R. E. Gur, R. C. Gur, J. C. Morris, M. S. Albert, H. J. Grabe, S. M. Resnick, N. R. Bryan, K. Wittfeld, R. Bülow, D. A. Wolk, H. C. Shou, I. M. Nasrallah, C. Davatzikos, and The iSTAGING and PHENOM Consortia, “Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors,” J. Magn. Reson. Imaging, vol. 55, no. 3, pp. 908–916, Mar. 2022. doi: 10.1002/jmri.27908
|
[176] |
C. I. Bercea, B. Wiestler, D. Rueckert, and S. Albarqouni, “Federated disentangled representation learning for unsupervised brain anomaly detection,” Nat. Mach. Intell., vol. 4, no. 8, pp. 685–695, Aug. 2022. doi: 10.1038/s42256-022-00515-2
|
[177] |
X. Bai, H. C. Wang, L. Y. Ma, Y. C. Xu, J. F. Gan, Z. W. Fan, F. Yang, K. Ma, J. H. Yang, S. Bai, C. Shu, X. Y. Zou, R. H. Huang, C. Z. Zhang, X. W. Liu, D. D. Tu, C. O. Xu, W. Q. Zhang, X. Wang, A. G. Chen, Y. Zeng, D. H. Yang, M. W. Wang, N. Holalkere, N. J. Halin, I. R. Kamel, J. Wu, X. H. Peng, X. Wang, J. B. Shao, P. Mongkolwat, J. J. Zhang, W. Y. Liu, M. Roberts, Z. Z. Teng, L. Beer, L. E. Sanchez, E. Sala, D. L. Rubin, A. Weller, J. Lasenby, C. S. Zheng, J. M. Wang, Z. Li, C. Schönlieb, and T. Xia, “Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence,” Nat. Mach. Intell., vol. 3, no. 12, pp. 1081–1089, Dec. 2021. doi: 10.1038/s42256-021-00421-z
|
[178] |
M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”: Explaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, USA, 2016, pp. 1135−1144.
|
[179] |
Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “GraphLIME: Local interpretable model explanations for graph neural networks,” IEEE Trans. Knowl. Data Eng., DOI: 10.1109/TKDE.2022.3187455
|
[180] |
S. M. Lundberg and S. I. Lee, “A unified approach to interpreting model predictions,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 4768−4777.
|
[181] |
E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Maximizing for domain invariance,” arXiv preprint arXiv: 1412.3474, 2014.
|
[182] |
M. S. Long, Y. Cao, J. M. Wang, and M. I. Jordan, “Learning transferable features with deep adaptation networks,” in Proc. 32nd Int. Conf. Machine Learning, Lille, France, 2015, pp. 97−105.
|
[183] |
X. T. Han, L. Qi, Q. Yu, Z. Q. Zhou, Y. F. Zheng, Y. H. Shi, and Y. Gao, “Deep symmetric adaptation network for cross-modality medical image segmentation,” IEEE Trans. Med. Imaging, vol. 41, no. 1, pp. 121–132, Jan. 2022. doi: 10.1109/TMI.2021.3105046
|
[184] |
Y. C. Zhu, F. Z. Zhuang, J. D. Wang, G. L. Ke, J. W. Chen, J. Bian, H. Xiong, and Q. He, “Deep subdomain adaptation network for image classification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4, pp. 1713–1722, Apr. 2021. doi: 10.1109/TNNLS.2020.2988928
|
[185] |
Y. R. Jin, Z. Y. Li, Y. Q. Liu, J. L. Liu, C. J. Qin, L. Q. Zhao, and C. L. Liu, “Multi-class 12-lead ECG automatic diagnosis based on a novel subdomain adaptive deep network,” Sci. China Technol. Sci., vol. 65, no. 11, pp. 2617–2630, Sept. 2022. doi: 10.1007/s11431-022-2080-6
|
[186] |
J. D. Wang, Y. Q. Chen, W. J. Feng, H. Yu, M. Y. Huang, and Q. Yang, “Transfer learning with dynamic distribution adaptation,” ACM Trans. Intell. Syst. Technol., vol. 11, no. 1, p. 6, Feb. 2020.
|
[187] |
B. Xu, K. W. Wu, Y. Wu, J. He, and C. Y. Chen, “Dynamic adversarial domain adaptation based on multikernel maximum mean discrepancy for breast ultrasound image classification,” Expert Syst. Appl., vol. 207, p. 117978, Nov. 2022. doi: 10.1016/j.eswa.2022.117978
|
[188] |
H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms,” arXiv preprint arXiv: 1708.07747, 2017.
|
[189] |
K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in Proc. 11th European Conf. Computer Vision, Heraklion, Crete, Greece, 2010, pp. 213−226.
|
[190] |
B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M. A. Weber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L. Collins, N. Cordier, J. J. Corso, A. Criminisi, T. Das, H. Delingette, Ç. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland, X. T. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John, E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H. C. Shin, J. Shotton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M. Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H. Ye, L. Zhao, B. S. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van Leemput, “The multimodal brain tumor image segmentation benchmark (BRATS),” IEEE Trans. Med. Imaging, vol. 34, no. 10, pp. 1993–2024, Oct. 2015. doi: 10.1109/TMI.2014.2377694
|
[191] |
X. H. Zhuang and J. Shen, “Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI,” Med. Image Anal., vol. 31, pp. 77–87, Jul. 2016. doi: 10.1016/j.media.2016.02.006
|
[192] |
A. E. Kavur, N. S. Gezer, M. Barış, S. Aslan, P. H. Conze, V. Groza, D. D. Pham, S. Chatterjee, P. Ernst, S. Özkan, B. Baydar, D. Lachinov, S. Han, J. Pauli, F. Isensee, M. Perkonigg, R. Sathish, R. Rajan, D. Sheet, G. Dovletov, O. Speck, A. Nürnberger, K. H. Maier-Hein, G. B. Akar, G. Ünal, O. Dicle, and M. A. Selver, “CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation,” Med Image Anal, vol. 69, p. 101950, Apr. 2021. doi: 10.1016/j.media.2020.101950
|
[193] |
M. H. Yap, G. Pons, J. Martí, S. Ganau, M. Sentís, R. Zwiggelaar, A. K. Davison, and R. Martí, “Automated breast ultrasound lesions detection using convolutional neural networks,” IEEE J. Biomed. Health Inform., vol. 22, no. 4, pp. 1218–1226, Jul. 2018. doi: 10.1109/JBHI.2017.2731873
|
[194] |
J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C. O. Hughes, R. Raine, J. Hughes, D. A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P. T. Khaw, M. Suleyman, J. Cornebise, P. A. Keane, and O. Ronneberger, “Clinically applicable deep learning for diagnosis and referral in retinal disease,” Nat. Med., vol. 24, no. 9, pp. 1342–1350, Sept. 2018. doi: 10.1038/s41591-018-0107-6
|
[195] |
K. E. Stephan, F. Schlagenhauf, Q. J. M. Huys, S. Raman, E. A. Aponte, K. H. Brodersen, L. Rigoux, R. J. Moran, J. Daunizeau, R. J. Dolan, K. J. Friston, and A. Heinz, “Computational neuroimaging strategies for single patient predictions,” NeuroImage, vol. 145, pp. 180–199, Jan. 2017. doi: 10.1016/j.neuroimage.2016.06.038
|
[196] |
C. Anastasopoulos, S. Yang, M. Pradella, T. A. D’Antonoli, S. Knecht, J. Cyriac, M. Reisert, E. Kellner, R. Achermann, P. Haaf, B. Stieltjes, A. W. Sauter, J. Bremerich, G. Sommer, and A. Abdulkadir, “Atri-U: Assisted image analysis in routine cardiovascular magnetic resonance volumetry of the left atrium,” J. Cardiovasc. Magn. Reson., vol. 23, no. 1, p. 133, Nov. 2021. doi: 10.1186/s12968-021-00791-8
|
[197] |
Y. L. Zhu and X. W. Duan, “Predictive nursing helps improve treatment efficacy, treatment compliance, and quality of life in unstable angina pectoris patients,” Am. J. Transl. Res., vol. 13, no. 4, pp. 3473–3479, Apr. 2021.
|
[198] |
N. A. M. Pauzi, Y. B. Wah, S. M. Deni, S. Khatijah, N. A. Rahim, and Suhartono, “Comparison of single and MICE imputation methods for missing values: A simulation study,” Pertanika J. Sci. Technol., vol. 29, no. 2, pp. 979–998, Apr. 2021.
|
[199] |
P. Wyss, D. Ginsbourger, H. C. Shou, et al., “Adaptive data-driven selection of sequences of biological and cognitive markers in pre-clinical diagnosis of dementia,” medRxiv, DOI: 10.1101/2021.10.26.21265515, 2021.
|