IEEE/CAA Journal of Automatica Sinica
Citation: | N. Gu, H. L. Wang, A. Q. Wang, and L. Liu, “Safety-critical game-based formation control of underactuated autonomous surface vehicles,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 1102–1104, Apr. 2023. doi: 10.1109/JAS.2023.123120 |
[1] |
Z. Zuo, J. Song, and Q.-L. Han, “Coordinated planar path-following control for multiple nonholonomic wheeled mobile robots,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9404–9413, Sept. 2022. doi: 10.1109/TCYB.2021.3057335
|
[2] |
Z. Zuo, C. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and future challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 601–614, Apr. 2022. doi: 10.1109/JAS.2022.105410
|
[3] |
Z. Peng, J. Wang, and D. Wang, “Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3831–3839, May 2017. doi: 10.1109/TIE.2017.2652346
|
[4] |
T. Li, R. Zhao, C. L. P. Chen, L. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3243–3253, Nov. 2018. doi: 10.1109/TCYB.2018.2794968
|
[5] |
Z. Peng, J. Wang, and D. Wang, “Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation,” IEEE Trans. Control Syst. Technol., vol. 26, no. 3, pp. 1083–1090, May 2018. doi: 10.1109/TCST.2017.2699167
|
[6] |
N. Gu, D. Wang, Z. Peng, J. Wang, and Q.-L. Han, “Advances in line-of-sight guidance for path following of autonomous marine vehicles: An overview,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 53, no. 1, pp. 12–28, Jan. 2023. doi: 10.1109/TSMC.2022.31628622
|
[7] |
Z. Peng, J. Wang, and D. Wang, “Containment maneuvering of marine surface vehicles with multiple parameterized paths via spatial-temporal decoupling,” IEEE/ASME Trans. Mechatron., vol. 22, no. 2, pp. 1026–1036, Apr. 2017. doi: 10.1109/TMECH.2016.2632304
|
[8] |
S. Gao, Z. Peng, H. Wang, L. Liu, and D. Wang, “Safety-critical model-free control for multi-target tracking of USVs with collision avoidance,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1323–1326, Jul. 2022. doi: 10.1109/JAS.2022.105707
|
[9] |
M. Ye, J. Yin, and L. Yin, “Distributed Nash equilibrium seeking for general networked games with bounded disturbances,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 376–387, Feb. 2023. doi: 10.1109/JAS.2022.105428
|
[10] |
M. Ye, “Distributed robust seeking of Nash equilibrium for networked games: An extended state observer-based approach,” IEEE Trans. Cybern., vol. 52, no. 3, pp. 1527–1538, Mar. 2022. doi: 10.1109/TCYB.2020.2989755
|
[11] |
X. Fang, J. Zhou, and G. Wen, “Location game of multiple unmanned surface vessels with quantized communications,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 69, no. 3, pp. 1322–1326, Mar. 2022. doi: 10.1109/TCSII.2021.3111733
|
[12] |
G. Wen, X. Fang, J. Zhou, and J. Zhou, “Robust formation tracking of multiple autonomous surface vessels with individual objectives: A noncooperative game-based approach,” Control Eng. Pract., vol. 119, p. 104975, 2022.
|
[13] |
H. Khalil, Nonlinear Control. London, UK: Pearson Education, 2015.
|
[14] |
L. Liu, D. Wang, and Z. Peng, “State recovery and disturbance estimation of unmanned surface vehicles based on nonlinear extended state observers,” Ocean Eng., vol. 171, pp. 625–632, Jan. 2019. doi: 10.1016/j.oceaneng.2018.11.008
|
[15] |
W. Wu, Z. Peng, L. Liu, and D. Wang, “A general safety-certified cooperative control architecture for interconnected intelligent surface vehicles with applications to vessel train,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 627–637, Sept. 2022. doi: 10.1109/TIV.2022.3168974
|