A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 3
Mar.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
T. Q. Yu, Y.-J. Liu, and L. Liu, “Adaptive neural control for nonlinear MIMO function constraint systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 816–818, Mar. 2023. doi: 10.1109/JAS.2023.123105
Citation: T. Q. Yu, Y.-J. Liu, and L. Liu, “Adaptive neural control for nonlinear MIMO function constraint systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 816–818, Mar. 2023. doi: 10.1109/JAS.2023.123105

Adaptive Neural Control for Nonlinear MIMO Function Constraint Systems

doi: 10.1109/JAS.2023.123105
More Information
  • loading
  • [1]
    W. He, S. S. Ge, B. V. E. How, Y. S. Choo, and K. S. Hong, “Robust adaptive boundary control of a flexible marine riser with vessel dynamics,” Automatica, vol. 47, no. 4, pp. 722–732, 2011. doi: 10.1016/j.automatica.2011.01.064
    [2]
    W. He, S. Zhang, and S. S. Ge, “Robust adaptive control of a thruster assisted position mooring system,” Automatica, vol. 50, no. 7, pp. 1843–1851, 2014. doi: 10.1016/j.automatica.2014.04.023
    [3]
    S. N. Huang, K. K. Tan, and T. H. Lee, “Nonlinear adaptive control of interconnected systems using neural networks,” IEEE Trans. Neural Networks, vol. 17, no. 1, pp. 243–246, 2006. doi: 10.1109/TNN.2005.857948
    [4]
    H. Wang, K. Xu, P. X. Liu, and J. Qiao, “Adaptive fuzzy fast finite-time dynamic surface tracking control for nonlinear systems,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp. 4337–4348, 2021. doi: 10.1109/TCSI.2021.3098830
    [5]
    S. C. Tong, C. Y. Li, and Y. M. Li, “Fuzzy adaptive observer backstepping control for MIMO nonlinear systems,” Fuzzy Sets and Systems, vol. 160, no. 19, pp. 2755–2775, 2009. doi: 10.1016/j.fss.2009.03.008
    [6]
    C. Wu, J. Liu, Y. Xiong, and L. Wu, “Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 7, pp. 3022–3033, 2018.
    [7]
    G. Z. Cui, et al., “Adaptive tracking control for uncertain switched stochastic nonlinear pure-feedback systems with unknown backlash-like hysteresis,” J. Franklin Institute, vol. 354, no. 4, pp. 1801–1818, 2017. doi: 10.1016/j.jfranklin.2016.12.029
    [8]
    J. Sun, J. Yi, and Z. Pu, “Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations,” IEEE Trans. Fuzzy Systems, vol. 30, no. 4, pp. 1114–1128, 2022. doi: 10.1109/TFUZZ.2021.3052610
    [9]
    Z. Zhang and Y. Wu, “Adaptive fuzzy tracking control of autonomous underwater vehicles with output constraints,” IEEE Trans. Fuzzy Systems, vol. 29, no. 5, pp. 1311–1319, 2021. doi: 10.1109/TFUZZ.2020.2967294
    [10]
    C. Si, Q. G. Wang, and J. Yu, “Event-triggered adaptive fuzzy neural network output feedback control for constrained stochastic nonlinear systems,” IEEE Trans. Neural Networks and Learning Systems, 2022. DOI: 10.1109/TNNLS.2022.3203419
    [11]
    W. Zhao, Y.-J. Liu, and L. Liu, “Observer-based adaptive fuzzy tracking control using integral barrier Lyapunov functionals for a nonlinear system with full state constraints,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 617–627, 2021. doi: 10.1109/JAS.2021.1003877
    [12]
    C. Si, Q. G. Wang, G. Cui, and J. Yu, “Event-triggered adaptive output feedback control for stochastic nonlinear systems with time-varying full-state constraints,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 70, no. 1, pp. 251–253, Jan. 2023. doi: 10.1109/TCSII.2022.3203418
    [13]
    S. C. Tong, Y. Li, G. Feng, and T. Li, “Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems,” IEEE Trans. Systems,Man,and Cybernetics,Part B (Cybernetics), vol. 41, no. 4, pp. 1124–1135, 2011. doi: 10.1109/TSMCB.2011.2108283
    [14]
    Q. Zhou, P. Shi, Y. Tian, and M. Wang, “Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation,” IEEE Trans. Cybernetics, vol. 45, no. 10, pp. 2119–2128, 2015. doi: 10.1109/TCYB.2014.2365778
    [15]
    Y. J. Liu, S. C. Tong, C. L. P. Chen, and D. Li, “Adaptive NN control using integral barrier Lyapunov functionals for uncertain nonlinear block-triangular constraint systems,” IEEE Trans. Cybernetics, vol. 47, no. 11, pp. 3747–3757, 2017. doi: 10.1109/TCYB.2016.2581173
    [16]
    P. H. Du, H. J. Liang, S. Y. Zhao, and C. K. Ahn, “Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints,” IEEE Trans. Systems,Man,and Cybernetics: Systems, vol. 51, no. 5, pp. 3146–3147, 2021.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (213) PDF downloads(83) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return