A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
J. She, K. Miyamoto, Q.-L. Han, M. Wu, H. Hashimoto, and Q.-G. Wang, “Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: Deep observation and comparison,” IEEE/CAA J. Autom. Sinica,. doi: 10.1109/JAS.2022.105929
Citation: J. She, K. Miyamoto, Q.-L. Han, M. Wu, H. Hashimoto, and Q.-G. Wang, “Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: Deep observation and comparison,” IEEE/CAA J. Autom. Sinica,. doi: 10.1109/JAS.2022.105929

Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison

doi: 10.1109/JAS.2022.105929
Funds:  This work was supported in part by the JSPS (Japan Society for the Promotion of Science) KAKENHI (20H04566, 22H03998); the National Natural Science Foundation of China (61873348); the Natural Science Foundation of Hubei Province, China (2020CFA031); and Wuhan Applied Foundational Frontier Project (2020010601012175)
More Information
  • Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses. This paper presents a deep observation on and a comparison between two of those methods: the generalized extended-state observer (GESO) and the equivalent input disturbance (EID) from assumptions, system configurations, stability conditions, system design, disturbance-rejection performance, and extensibility. A time-domain index is introduced to assess the disturbance-rejection performance. A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method. A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.

     

  • loading
  • [1]
    M. Ruderman, M. Iwasaki, and W.-H. Chen, “Motion-control techniques of today and tomorrow,” IEEE Ind. Electron. Mag., vol. 14, no. 1, pp. 41–55, 2020. doi: 10.1109/MIE.2019.2956683
    [2]
    J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 900–906, 2009. doi: 10.1109/TIE.2008.2011621
    [3]
    Q. Zhang and Z. Gao, “Active disturbance rejection control: Some recent experimental and industrial case studies,” Control Theory Tech., vol. 16, no. 4, pp. 301–313, 2018. doi: 10.1007/s11768-018-8142-x
    [4]
    H. Sira-Ramírez, E. W. Zurita-Bustamante, and C. Huang, “Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 9, pp. 1696–1710, 2020.
    [5]
    S. Li, J. Yang, W.-H. Chen, and X. Chen, “Generalized extended state observer based control for systems with mismatched uncertainties,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4792–4802, 2012. doi: 10.1109/TIE.2011.2182011
    [6]
    A. A. Godbole, J. Kolhe, and S. E. Talole, “Performance analysis of generalized extended state observer in tackling sinusoidal disturbances,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6, pp. 2212–2223, 2013. doi: 10.1109/TCST.2012.2231512
    [7]
    Y. Huang and W. Xue, “Active disturbance rejection control: Methodology and theoretical analysis,” ISA Trans., vol. 53, pp. 963–976, 2014. doi: 10.1016/j.isatra.2014.03.003
    [8]
    H. Feng and B.-Z. Guo, “Active disturbance rejection control: Old and new results,” Annu. Rev. Control, vol. 44, pp. 238–248, 2017. doi: 10.1016/j.arcontrol.2017.05.003
    [9]
    H. Sira-Ramírez, A. Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita-Bustamante, Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, Butterworth-Heinemann, UK, 2017.
    [10]
    S. Li, J. Yang, W.-H. Chen, and X. Chen, Disturbance Observer-Based Control: Methods and Applications, CRC Press, 2013.
    [11]
    S. E. Talole, “Active disturbance rejection control: Applications in aerospace,” Control Theory Technol., vol. 16, pp. 314–323, 2018. doi: 10.1007/s11768-018-8114-1
    [12]
    Q. Lu, D. Zhang, W. Ye, J. Fan, S. Liu, and C.-Y. Su, “Targeting posture control with dynamic obstacle avoidance of constrained uncertain wheeled mobile robots including unknown skidding and slipping,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, pp. 6650–6659, 2021. doi: 10.1109/TSMC.2019.2962732
    [13]
    A. Sabanovic and K. Ohnishi, Motion Control Systems, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2011.
    [14]
    E. Sariyildiz, R. Oboe, and K. Ohnishi, “Disturbance observer-based robust control and its applications: 35th anniversary overview,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2042–2053, 2020. doi: 10.1109/TIE.2019.2903752
    [15]
    J. She, M. Fang, Y. Ohyama, H. Hashimoto, and M. Wu, “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 380–389, 2008. doi: 10.1109/TIE.2007.905976
    [16]
    W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods—An overview,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083–1095, 2015.
    [17]
    T. E. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, 2nd Ed., 2014.
    [18]
    B. B. Alagoz, F. N. Deniz, C. Keles, and N. Tan, “Disturbance rejection performance analysis of closed loop control systems by reference to disturbance ratio,” ISA Trans., vol. 55, pp. 63–71, 2015. doi: 10.1016/j.isatra.2014.09.013
    [19]
    W. Xue and Y. Huang, “Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems,” ISA Trans., vol. 58, pp. 133–154, 2015. doi: 10.1016/j.isatra.2015.05.001
    [20]
    B. Huang and S. L. Shah, Performance Assessment of Control Loops: Theory and Applications, Springer, 1999.
    [21]
    P. D. Domański, Control Performance Assessment: Theoretical Analyses and Industrial Practice, Springer, 2020.
    [22]
    M. Jelali, Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, Springer, 2013.
    [23]
    M. Farza, A. Ragoubi, S. Hadj Saïd, and M. M'Saad, “Improved high gain observer design for a class of disturbed nonlinear systems,” Nonlinear Dyn., vol. 106, pp. 631–655, 2021. doi: 10.1007/s11071-021-06876-4
    [24]
    J. Han, Active Disturbance Rejection Control Technique—The Technique for Estimating and Compensating the Uncertainties, National Defense Industry Press, Beijing, 2013 (in Chinese).
    [25]
    J. She, X. Xin, and Y. Pan, “Equivalent-input-disturbance approach—Analysis and application to disturbance rejection in dual-stage feed drive control system,” IEEE/ASME Trans. Mechatron., vol. 16, no. 2, pp. 330–340, 2011. doi: 10.1109/TMECH.2010.2043258
    [26]
    C. H. Park, J. H. Kyung, D. I. Park, K. T. Park, D. H. Kim, and D. G. Gweon, “Direct teaching algorithm for a manipulator in a constraint condition using the teaching force shaping method,” Adv. Robot., vol. 24, pp. 1365–1384, 2010. doi: 10.1163/016918610X501471
    [27]
    K.-Z. Liu and Y. Yao, Robust Control: Theory and Applications, John Wiley & Sons, 2016.
    [28]
    J. C. Doyle, R. S. Smith, and D. F. Enns, “Control of plants with input saturation nonlinearities,” in Proc. Am. Control Conf., pp. 1034–1039, 1987.
    [29]
    J. She, X. Xin, and Y. Ohyama, “Estimation of equivalent input disturbance improves vehicular steering control,” IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3722–3731, 2007. doi: 10.1109/TVT.2007.904543
    [30]
    C. E. Maley, “The effect of parameters on the roots of an equation system,” Comput. J., vol. 4, no. 1, pp. 62–63, 1961. doi: 10.1093/comjnl/4.1.62
    [31]
    P. Yu, K.-Z. Liu, J. She, M. Wu, and Y. Nakanishi, “Robust disturbance rejection for repetitive control systems with time-varying nonlinearities,” Int. J. Robust Nonlinear Control, vol. 29, pp. 1597–1612, 2018.
    [32]
    K. Miyamoto, J. She, J. Imani, X. Xin, and D. Sato, “Equivalent-input-disturbance approach to active structural control for seismically excited buildings,” Eng. Struct., vol. 125, pp. 392–399, 2016. doi: 10.1016/j.engstruct.2016.07.028
    [33]
    P. Yu, M. Wu, J. She, K.-Z. Liu, and Y. Nakanishi, “Robust tracking and disturbance rejection for linear uncertain system with unknown state delay and disturbance,” IEEE/ASME Trans. Mechatron., vol. 23, no. 3, pp. 1445–1455, 2018. doi: 10.1109/TMECH.2018.2816005
    [34]
    R. Madoński and Herman, “Survey on methods of increasing the efficiency of extended state disturbance observers,” ISA Trans., vol. 56, pp. 18–27, 2015. doi: 10.1016/j.isatra.2014.11.008
    [35]
    Y. Du, W. Cao, J. She, M. Wu, M. Fang, and S. Kawata, “Disturbance rejection and control system design using improved equivalent input disturbance approach,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3013–3023, 2020. doi: 10.1109/TIE.2019.2913829
    [36]
    Y. Du, W. Cao, J. She, M. Wu, M. Fang, and S. Kawata, “Disturbance rejection and robustness of improved equivalent-input-disturbance-based system,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8537–8546, 2022
    [37]
    B. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, “Generalized integrator-extended state observer with applications to grid-connected converters in the presence of disturbances,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 744–755, 2021. doi: 10.1109/TCST.2020.2981571
    [38]
    Q. Mei, J. She, Z.-T. Liu, and M. Wu, “Estimation and compensation of periodic disturbance using internal-model-based equivalent-input-disturbance approach,” Sci. China Inf. Sci., vol. 65, no. 8, pp. 1182205: 1–14, 2022.
    [39]
    S. Chen, W. Bai, Y. Hu, Y. Huang, and Z. Gao, “On the conceptualization of total disturbance and its profound implications,” Sci. China Inf. Sci., vol. 63, pp. 129201: 1–3, 2020.
    [40]
    F. Gao, M. Wu, J. She, and W. Cao, “Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach,” Appl. Math. Comput., vol. 282, pp. 244–253, 2016.
    [41]
    L. Ouyang, M. Wu, and J. She, “Estimation of and compensation for unknown input nonlinearities using equivalent-input-disturbance approach,” Nonlinear Dyn., vol. 88, no. 3, pp. 2161–2170, 2017. doi: 10.1007/s11071-017-3369-5
    [42]
    G. Tian, and Z. Gao, “From Poncelet’s invariance principle to active disturbance rejection,” in Proc. Am. Control Conf., pp. 2451–2457, 2009, St. Louis, MO, USA
    [43]
    X. Yin, J. She, M. Wu, D. Sato, and K. Hirota, “Disturbance rejection and performance analysis for nonlinear systems based on nonlinear equivalent-input-disturbance approach,” Nonlinear Dyn., vol. 100, no. 4, pp. 3497–3511, 2020. doi: 10.1007/s11071-020-05699-z
    [44]
    Z. Wang, J. She, Z.-T. Liu, and M. Wu, “Modified equivalent-input-disturbance approach to improving disturbance-rejection performance,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 673–683, 2022. doi: 10.1109/TIE.2021.3053889
    [45]
    J. Sun, J. Yang, and S. Li, “Reduced-order GPIO based dynamic event-triggered tracking control of a networked one-DOF link manipulator without velocity measurement,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 725–734, 2020. doi: 10.1109/JAS.2019.1911738
    [46]
    K. Miyamoto, J. She, S. Nakano, D. Sato, and Y. Chen, “Active structural control of base-isolated building using equivalent-input-disturbance approach with reduced-order state observer,” J. Dyn. Sys., Meas., Control, vol. 144, no. 9, pp. 091006: 1–14, 2022.
    [47]
    T. He and Z. Wu, “Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1576–1587, 2021. doi: 10.1109/JAS.2021.1003958
    [48]
    D. Astolfi, L. Marconi, L. Praly, and A. R. Teel, “Low-power peaking-free high-gain observers,” Automatica, vol. 98, pp. 169–179, 2018. doi: 10.1016/j.automatica.2018.09.009
    [49]
    Q. Wu, L. Yu, Y.-W. Wang, and W.-A. Zhang, “LESO-based position synchronization control for networked multi-axis servo systems with time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1116–1122, 2020. doi: 10.1109/JAS.2020.1003264
    [50]
    X. Song, W. Xue, and Y. Zhao, “Control design for maximal capability of disturbance rejection under general control input saturation,” J. Franklin Inst., vol. 358, pp. 9771–9793, 2021. doi: 10.1016/j.jfranklin.2021.10.026

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (32) PDF downloads(26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return