A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 4
Apr.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. She, K. Miyamoto, Q.-L. Han, M. Wu, H. Hashimoto, and Q.-G. Wang, “Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: Deep observation and comparison,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 957–968, Apr. 2023. doi: 10.1109/JAS.2022.105929
Citation: J. She, K. Miyamoto, Q.-L. Han, M. Wu, H. Hashimoto, and Q.-G. Wang, “Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: Deep observation and comparison,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 957–968, Apr. 2023. doi: 10.1109/JAS.2022.105929

Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison

doi: 10.1109/JAS.2022.105929
Funds:  This work was supported in part by the JSPS (Japan Society for the Promotion of Science) KAKENHI (20H04566, 22H03998), the National Natural Science Foundation of China (61873348), the Natural Science Foundation of Hubei Province, China (2020CFA031), and Wuhan Applied Foundational Frontier Project (2020010601012175)
More Information
  • Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state responses. This paper presents a deep observation on and a comparison between two of those methods: the generalized extended-state observer (GESO) and the equivalent input disturbance (EID) from assumptions, system configurations, stability conditions, system design, disturbance-rejection performance, and extensibility. A time-domain index is introduced to assess the disturbance-rejection performance. A detailed observation of disturbance-suppression mechanisms reveals the superiority of the EID approach over the GESO method. A comparison between these two methods shows that assumptions on disturbances are more practical and the adjustment of disturbance-rejection performance is easier for the EID approach than for the GESO method.

     

  • loading
  • [1]
    M. Ruderman, M. Iwasaki, and W.-H. Chen, “Motion-control techniques of today and tomorrow,” IEEE Ind. Electron. Mag., vol. 14, no. 1, pp. 41–55, 2020. doi: 10.1109/MIE.2019.2956683
    [2]
    J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 900–906, 2009. doi: 10.1109/TIE.2008.2011621
    [3]
    Q. Zhang and Z. Gao, “Active disturbance rejection control: Some recent experimental and industrial case studies,” Control Theory Tech., vol. 16, no. 4, pp. 301–313, 2018. doi: 10.1007/s11768-018-8142-x
    [4]
    H. Sira-Ramírez, E. W. Zurita-Bustamante, and C. Huang, “Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control,” IEEE Trans. Control Syst. Technol., vol. 28, no. 9, pp. 1696–1710, 2020.
    [5]
    S. Li, J. Yang, W.-H. Chen, and X. Chen, “Generalized extended state observer based control for systems with mismatched uncertainties,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4792–4802, 2012. doi: 10.1109/TIE.2011.2182011
    [6]
    A. A. Godbole, J. Kolhe, and S. E. Talole, “Performance analysis of generalized extended state observer in tackling sinusoidal disturbances,” IEEE Trans. Control Syst. Technol., vol. 21, no. 6, pp. 2212–2223, 2013. doi: 10.1109/TCST.2012.2231512
    [7]
    Y. Huang and W. Xue, “Active disturbance rejection control: Methodology and theoretical analysis,” ISA Trans., vol. 53, pp. 963–976, 2014. doi: 10.1016/j.isatra.2014.03.003
    [8]
    H. Feng and B.-Z. Guo, “Active disturbance rejection control: Old and new results,” Annu. Rev. Control, vol. 44, pp. 238–248, 2017. doi: 10.1016/j.arcontrol.2017.05.003
    [9]
    H. Sira-Ramírez, A. Luviano-Juárez, M. Ramírez-Neria, and E. W. Zurita-Bustamante, Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach, Butterworth-Heinemann, UK, 2017.
    [10]
    S. Li, J. Yang, W.-H. Chen, and X. Chen, Disturbance Observer-Based Control: Methods and Applications, CRC Press, 2013.
    [11]
    S. E. Talole, “Active disturbance rejection control: Applications in aerospace,” Control Theory Technol., vol. 16, pp. 314–323, 2018. doi: 10.1007/s11768-018-8114-1
    [12]
    Q. Lu, D. Zhang, W. Ye, J. Fan, S. Liu, and C.-Y. Su, “Targeting posture control with dynamic obstacle avoidance of constrained uncertain wheeled mobile robots including unknown skidding and slipping,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 11, pp. 6650–6659, 2021. doi: 10.1109/TSMC.2019.2962732
    [13]
    A. Sabanovic and K. Ohnishi, Motion Control Systems, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2011.
    [14]
    E. Sariyildiz, R. Oboe, and K. Ohnishi, “Disturbance observer-based robust control and its applications: 35th anniversary overview,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2042–2053, 2020. doi: 10.1109/TIE.2019.2903752
    [15]
    J. She, M. Fang, Y. Ohyama, H. Hashimoto, and M. Wu, “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 380–389, 2008. doi: 10.1109/TIE.2007.905976
    [16]
    W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods—An overview,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083–1095, 2015.
    [17]
    T. E. Marlin, Process Control: Designing Processes and Control Systems for Dynamic Performance, McGraw-Hill, 2nd Ed., 2014.
    [18]
    B. B. Alagoz, F. N. Deniz, C. Keles, and N. Tan, “Disturbance rejection performance analysis of closed loop control systems by reference to disturbance ratio,” ISA Trans., vol. 55, pp. 63–71, 2015. doi: 10.1016/j.isatra.2014.09.013
    [19]
    W. Xue and Y. Huang, “Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems,” ISA Trans., vol. 58, pp. 133–154, 2015. doi: 10.1016/j.isatra.2015.05.001
    [20]
    B. Huang and S. L. Shah, Performance Assessment of Control Loops: Theory and Applications, Springer, 1999.
    [21]
    P. D. Domański, Control Performance Assessment: Theoretical Analyses and Industrial Practice, Springer, 2020.
    [22]
    M. Jelali, Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, Springer, 2013.
    [23]
    M. Farza, A. Ragoubi, S. Hadj Saïd, and M. M’Saad, “Improved high gain observer design for a class of disturbed nonlinear systems,” Nonlinear Dyn., vol. 106, pp. 631–655, 2021. doi: 10.1007/s11071-021-06876-4
    [24]
    J. Han, Active Disturbance Rejection Control Technique—The Technique for Estimating and Compensating the Uncertainties, National Defense Industry Press, Beijing, 2013 (in Chinese).
    [25]
    J. She, X. Xin, and Y. Pan, “Equivalent-input-disturbance approach—Analysis and application to disturbance rejection in dual-stage feed drive control system,” IEEE/ASME Trans. Mechatron., vol. 16, no. 2, pp. 330–340, 2011. doi: 10.1109/TMECH.2010.2043258
    [26]
    C. H. Park, J. H. Kyung, D. I. Park, K. T. Park, D. H. Kim, and D. G. Gweon, “Direct teaching algorithm for a manipulator in a constraint condition using the teaching force shaping method,” Adv. Robot., vol. 24, pp. 1365–1384, 2010. doi: 10.1163/016918610X501471
    [27]
    K.-Z. Liu and Y. Yao, Robust Control: Theory and Applications, John Wiley & Sons, 2016.
    [28]
    J. C. Doyle, R. S. Smith, and D. F. Enns, “Control of plants with input saturation nonlinearities,” in Proc. Am. Control Conf., pp. 1034–1039, 1987.
    [29]
    J. She, X. Xin, and Y. Ohyama, “Estimation of equivalent input disturbance improves vehicular steering control,” IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3722–3731, 2007. doi: 10.1109/TVT.2007.904543
    [30]
    C. E. Maley, “The effect of parameters on the roots of an equation system,” Comput. J., vol. 4, no. 1, pp. 62–63, 1961. doi: 10.1093/comjnl/4.1.62
    [31]
    P. Yu, K.-Z. Liu, J. She, M. Wu, and Y. Nakanishi, “Robust disturbance rejection for repetitive control systems with time-varying nonlinearities,” Int. J. Robust Nonlinear Control, vol. 29, pp. 1597–1612, 2018.
    [32]
    K. Miyamoto, J. She, J. Imani, X. Xin, and D. Sato, “Equivalent-input-disturbance approach to active structural control for seismically excited buildings,” Eng. Struct., vol. 125, pp. 392–399, 2016. doi: 10.1016/j.engstruct.2016.07.028
    [33]
    P. Yu, M. Wu, J. She, K.-Z. Liu, and Y. Nakanishi, “Robust tracking and disturbance rejection for linear uncertain system with unknown state delay and disturbance,” IEEE/ASME Trans. Mechatron., vol. 23, no. 3, pp. 1445–1455, 2018. doi: 10.1109/TMECH.2018.2816005
    [34]
    R. Madoński and Herman, “Survey on methods of increasing the efficiency of extended state disturbance observers,” ISA Trans., vol. 56, pp. 18–27, 2015. doi: 10.1016/j.isatra.2014.11.008
    [35]
    Y. Du, W. Cao, J. She, M. Wu, M. Fang, and S. Kawata, “Disturbance rejection and control system design using improved equivalent input disturbance approach,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3013–3023, 2020. doi: 10.1109/TIE.2019.2913829
    [36]
    Y. Du, W. Cao, J. She, M. Wu, M. Fang, and S. Kawata, “Disturbance rejection and robustness of improved equivalent-input-disturbance-based system,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8537–8546, 2022
    [37]
    B. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, “Generalized integrator-extended state observer with applications to grid-connected converters in the presence of disturbances,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 744–755, 2021. doi: 10.1109/TCST.2020.2981571
    [38]
    Q. Mei, J. She, Z.-T. Liu, and M. Wu, “Estimation and compensation of periodic disturbance using internal-model-based equivalent-input-disturbance approach,” Sci. China Inf. Sci., vol. 65, no. 8, pp. 1182205: 1–14, 2022.
    [39]
    S. Chen, W. Bai, Y. Hu, Y. Huang, and Z. Gao, “On the conceptualization of total disturbance and its profound implications,” Sci. China Inf. Sci., vol. 63, pp. 129201: 1–3, 2020.
    [40]
    F. Gao, M. Wu, J. She, and W. Cao, “Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach,” Appl. Math. Comput., vol. 282, pp. 244–253, 2016.
    [41]
    L. Ouyang, M. Wu, and J. She, “Estimation of and compensation for unknown input nonlinearities using equivalent-input-disturbance approach,” Nonlinear Dyn., vol. 88, no. 3, pp. 2161–2170, 2017. doi: 10.1007/s11071-017-3369-5
    [42]
    G. Tian, and Z. Gao, “From Poncelet’s invariance principle to active disturbance rejection,” in Proc. Am. Control Conf., pp. 2451–2457, 2009, St. Louis, MO, USA
    [43]
    X. Yin, J. She, M. Wu, D. Sato, and K. Hirota, “Disturbance rejection and performance analysis for nonlinear systems based on nonlinear equivalent-input-disturbance approach,” Nonlinear Dyn., vol. 100, no. 4, pp. 3497–3511, 2020. doi: 10.1007/s11071-020-05699-z
    [44]
    Z. Wang, J. She, Z.-T. Liu, and M. Wu, “Modified equivalent-input-disturbance approach to improving disturbance-rejection performance,” IEEE Trans. Ind. Electron., vol. 69, no. 1, pp. 673–683, 2022. doi: 10.1109/TIE.2021.3053889
    [45]
    J. Sun, J. Yang, and S. Li, “Reduced-order GPIO based dynamic event-triggered tracking control of a networked one-DOF link manipulator without velocity measurement,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 725–734, 2020. doi: 10.1109/JAS.2019.1911738
    [46]
    K. Miyamoto, J. She, S. Nakano, D. Sato, and Y. Chen, “Active structural control of base-isolated building using equivalent-input-disturbance approach with reduced-order state observer,” J. Dyn. Sys., Meas., Control, vol. 144, no. 9, pp. 091006: 1–14, 2022.
    [47]
    T. He and Z. Wu, “Iterative learning disturbance observer based attitude stabilization of flexible spacecraft subject to complex disturbances and measurement noises,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 9, pp. 1576–1587, 2021. doi: 10.1109/JAS.2021.1003958
    [48]
    D. Astolfi, L. Marconi, L. Praly, and A. R. Teel, “Low-power peaking-free high-gain observers,” Automatica, vol. 98, pp. 169–179, 2018. doi: 10.1016/j.automatica.2018.09.009
    [49]
    Q. Wu, L. Yu, Y.-W. Wang, and W.-A. Zhang, “LESO-based position synchronization control for networked multi-axis servo systems with time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1116–1122, 2020. doi: 10.1109/JAS.2020.1003264
    [50]
    X. Song, W. Xue, and Y. Zhao, “Control design for maximal capability of disturbance rejection under general control input saturation,” J. Franklin Inst., vol. 358, pp. 9771–9793, 2021. doi: 10.1016/j.jfranklin.2021.10.026

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (501) PDF downloads(139) Cited by()

    Highlights

    • The generalized extended-state observer (GESO) and the equivalent input disturbance (EID) are compared
    • A detailed observation of disturbance-suppression mechanisms is carried out
    • A time-domain index is introduced to assess the disturbance-rejection performance

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return