A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 7
Jul.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. X. Wu, D. Y. Meng, and Z.-G. Wu, “Disagreement and antagonism in signed networks: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1166–1187, Jul. 2022. doi: 10.1109/JAS.2022.105680
Citation: Y. X. Wu, D. Y. Meng, and Z.-G. Wu, “Disagreement and antagonism in signed networks: A survey,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1166–1187, Jul. 2022. doi: 10.1109/JAS.2022.105680

Disagreement and Antagonism in Signed Networks: A Survey

doi: 10.1109/JAS.2022.105680
Funds:  This work was supported by the National Natural Science Foundation of China (61922007, 61873013, U1966202)
More Information
  • Signed networks refer to a class of network systems including not only cooperative but also antagonistic interactions among nodes. Due to the existence of antagonistic interactions in signed networks, the agreement of nodes may not be established, instead of which disagreement behaviors generally emerge. This paper reviews several different disagreement behaviors in signed networks under the single-integrator linear dynamics, where two classes of topologies, namely, the static topology and the dynamic topology, are considered. For the static signed networks with the adjacency weights as (time-varying) scalars, we investigate the convergence behaviors and the fluctuation behaviors with respect to fixed topologies and switching topologies, respectively, and give some brief introductions on the disagreement behaviors of general time-varying signed networks. Correspondingly, several classes of behavior analysis approaches are also provided. For the dynamic signed networks with the adjacency weights as transfer functions or linear time-invariant systems, we show the specific descriptions and characteristics of them such that the disagreement behaviors can be obtained by resorting to the derived static signed graphs. Furthermore, we give their applications to the behavior analysis of static signed networks in the presence of high-order dynamics or communication delays.

     

  • loading
  • [1]
    R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007. doi: 10.1109/JPROC.2006.887293
    [2]
    F. Daneshfar and H. Bevrani, “Multi-agent systems in control engineering: A survey,” J. Control Sci. Eng., vol. 2009, pp. 249–256, May 2009.
    [3]
    Y. C. Cao, W. W. Yu, W. Ren, and G. R. Chen, “An overview of recent progress in the study of distributed multi-agent coordination,” IEEE Trans. Industr. Inform., vol. 9, no. 1, pp. 427–438, Feb. 2013. doi: 10.1109/TII.2012.2219061
    [4]
    W. Ren and Y. C. Cao, Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues. London, UK: Springer-Verlag, 2011.
    [5]
    J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, Sep. 2004. doi: 10.1109/TAC.2004.834433
    [6]
    R. S. Smith and F. Y. Hadaegh, “Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication,” IEEE Trans. Autom. Control, vol. 52, no. 8, pp. 1404–1414, Aug. 2007. doi: 10.1109/TAC.2007.902735
    [7]
    W. Qin, Z. X. Liu, and Z. Q. Chen, “Formation control for nonlinear multi-agent systems with linear extended state observer,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 171–179, Apr. 2014. doi: 10.1109/JAS.2014.7004547
    [8]
    Y. Y. Chen, R. Yu, Y. Zhang, and C. L. Liu, “Circular formation flight control for unmanned aerial vehicles with directed network and external disturbance,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 505–516, Mar. 2020. doi: 10.1109/JAS.2019.1911669
    [9]
    V. Gupta, B. Hassibi, and R. M. Murray, “On sensor fusion in the presence of packet-dropping communication channels,” in Proc. 44th IEEE Conf. Decision and Control, Seville, Spain, 2005, pp. 3547–3552.
    [10]
    S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 355–369, Jan. 2009. doi: 10.1109/TSP.2008.2007111
    [11]
    T. L. Zhou, M. Chen, and J. Zou, “Reinforcement learning based data fusion method for multi-sensors,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1489–1497, Nov. 2020. doi: 10.1109/JAS.2020.1003180
    [12]
    W. W. Yu, G. R. Chen, Z. D. Wang, and W. Yang, “Distributed consensus filtering in sensor networks,” IEEE Trans. Syst.,Man,Cybern.,Part B (Cybern.), vol. 39, no. 6, pp. 1568–1577, Dec. 2009. doi: 10.1109/TSMCB.2009.2021254
    [13]
    W. Ren, “Synchronization of coupled harmonic oscillators with local interaction,” Automatica, vol. 44, no. 12, pp. 3195–3200, Dec. 2008. doi: 10.1016/j.automatica.2008.05.027
    [14]
    N. Chopra and M. W. Spong, “On exponential synchronization of kuramoto oscillators,” IEEE Trans. Autom. Control, vol. 54, no. 2, pp. 353–357, Feb. 2009. doi: 10.1109/TAC.2008.2007884
    [15]
    S. E. Tuna, “Synchronization of harmonic oscillators under restorative coupling with applications in electrical networks,” Automatica, vol. 75, pp. 236–243, Jan. 2017. doi: 10.1016/j.automatica.2016.09.035
    [16]
    V. Amelkin, F. Bullo, and A. K. Singh, “Polar opinion dynamics in social networks,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5650–5665, Nov. 2017. doi: 10.1109/TAC.2017.2694341
    [17]
    S. E. Parsegov, A. V. Proskurnikov, R. Tempo, and N. E. Friedkin, “Novel multidimensional models of opinion dynamics in social networks,” IEEE Trans. Autom. Control, vol. 62, no. 5, pp. 2270–2285, May 2017. doi: 10.1109/TAC.2016.2613905
    [18]
    A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part I,” Annu. Rev. Control, vol. 43, pp. 65–79, May 2017. doi: 10.1016/j.arcontrol.2017.03.002
    [19]
    A. V. Proskurnikov and R. Tempo, “A tutorial on modeling and analysis of dynamic social networks. Part II,” Annu. Rev. Control, vol. 45, pp. 166–190, Jun. 2018. doi: 10.1016/j.arcontrol.2018.03.005
    [20]
    L. Moreau, “Stability of continuous-time distributed consensus algorithms,” in Proc. 43rd IEEE Conf. Decision and Control, Nassau, Bahamas, 2004, pp. 3998–4003.
    [21]
    W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 655–661, May 2005. doi: 10.1109/TAC.2005.846556
    [22]
    M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus in a dynamically changing environment: A graphical approach,” SIAM J. Control Optim., vol. 47, no. 2, pp. 575–600, Mar. 2008. doi: 10.1137/060657005
    [23]
    Y. M. Wu and X. X. He, “Secure consensus control for multiagent systems with attacks and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 136–142, Jan. 2017. doi: 10.1109/JAS.2016.7510010
    [24]
    G. H. Lin, H. Y. Li, H. Ma, D. Y. Yao, and R. Q. Lu, “Human-in-the-loop consensus control for nonlinear multi-agent systems with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 111–122, Jan. 2022. doi: 10.1109/JAS.2020.1003596
    [25]
    M. H. DeGroot, “Reaching a consensus,” J. Am. Stat. Assoc., vol. 69, no. 345, pp. 118–121, Mar. 1974. doi: 10.1080/01621459.1974.10480137
    [26]
    S. Roy, “Scaled consensus,” Automatica, vol. 51, pp. 259–262, Jan. 2015. doi: 10.1016/j.automatica.2014.10.073
    [27]
    D. Y. Meng and Y. M. Jia, “Scaled consensus problems on switching networks,” IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1664–1669, Jun. 2016. doi: 10.1109/TAC.2015.2479119
    [28]
    L. Zhao, Y. M. Jia, J. P. Yu, and J. P. Du, “H sliding mode based scaled consensus control for linear multi-agent systems with disturbances,” Appl. Math. Comput., vol. 292, pp. 375–389, Jan. 2017. doi: 10.1016/j.amc.2016.08.002
    [29]
    Y. Chen, J. H. Lü, F. L. Han, and X. H. Yu, “On the cluster consensus of discrete-time multi-agent systems,” Syst. Control Lett., vol. 60, no. 7, pp. 517–523, Jul. 2011. doi: 10.1016/j.sysconle.2011.04.009
    [30]
    J. H. Qin and C. B. Yu, “Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition,” Automatica, vol. 49, no. 9, pp. 2898–2905, Sep. 2013. doi: 10.1016/j.automatica.2013.06.017
    [31]
    Y. J. Han, W. L. Lu, and T. P. Chen, “Achieving cluster consensus in continuous-time networks of multi-agents with inter-cluster non-identical inputs,” IEEE Trans. Autom. Control, vol. 60, no. 3, pp. 793–798, Mar. 2015. doi: 10.1109/TAC.2014.2330428
    [32]
    J. H. Qin, Q. C. Ma, W. X. Zheng, H. J. Gao, and Y. Kang, “Robust H group consensus for interacting clusters of integrator agents,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3559–3566, Jul. 2017. doi: 10.1109/TAC.2017.2660240
    [33]
    J. Lunze, “Synchronization of heterogeneous agents,” IEEE Trans. Autom. Control, vol. 57, no. 11, pp. 2885–2890, Nov. 2012. doi: 10.1109/TAC.2012.2191332
    [34]
    K. Hengster-Movric, K. Y. You, F. L. Lewis, and L. H. Xie, “Synchronization of discrete-time multi-agent systems on graphs using Riccati design,” Automatica, vol. 49, no. 2, pp. 414–423, Feb. 2013. doi: 10.1016/j.automatica.2012.11.038
    [35]
    F. L. Lewis, B. Cui, T. D. Ma, Y. D. Song, and C. H. Zhao, “Heterogeneous multi-agent systems: Reduced-order synchronization and geometry,” IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1391–1396, May 2016. doi: 10.1109/TAC.2015.2471716
    [36]
    W. L. He, Z. K. Mo, Q. L. Han, and F. Qian, “Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326–1334, Sep. 2020.
    [37]
    Y. Xu, M. Fang, Y. J. Pan, K. B. Shi, and Z. G. Wu, “Event-triggered output synchronization for nonhomogeneous agent systems with periodic denial-of-service attacks,” Int. J. Robust Nonlinear Control, vol. 31, no. 6, pp. 1851–1865, Apr. 2021. doi: 10.1002/rnc.5223
    [38]
    S. L. Dong, G. R. Chen, M. Q. Liu, and Z. G. Wu, “Cooperative neural-adaptive fault-tolerant output regulation for heterogeneous nonlinear uncertain multiagent systems with disturbance,” Sci. China Inform. Sci., vol. 64, no. 7, pp. 177–188, Jul. 2021. doi: 10.1007/s11432-020-3122-6
    [39]
    H. Y. Liu, G. M. Xie, and L. Wang, “Necessary and sufficient conditions for containment control of networked multi-agent systems,” Automatica, vol. 48, no. 7, pp. 1415–1422, Jul. 2012. doi: 10.1016/j.automatica.2012.05.010
    [40]
    H. Y. Liu, L. Cheng, M. Tan, and Z. G. Hou, “Containment control of general linear multi-agent systems with multiple dynamic leaders: A fast sliding mode based approach,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 2, pp. 134–140, Apr. 2014. doi: 10.1109/JAS.2014.7004542
    [41]
    G. H. Wen, Y. Zhao, Z. S. Duan, W. W. Yu, and G. R. Chen, “Containment of higher-order multi-leader multi-agent systems: A dynamic output approach,” IEEE Trans. Autom. Control, vol. 61, no. 4, pp. 1135–1140, Apr. 2016. doi: 10.1109/TAC.2015.2465071
    [42]
    H. Y. Yang, F. Y. Wang, and F. J. Han, “Containment control of fractional order multi-agent systems with time delays,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 3, pp. 727–732, May 2018. doi: 10.1109/JAS.2016.7510211
    [43]
    S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications. Cambridge, UK: Cambridge University Press, 1994.
    [44]
    D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge, UK: Cambridge University Press, 2010.
    [45]
    G. Facchetti, G. Iacono, and C. Altafini, “Computing global structural balance in large-scale signed social networks,” Proc. Natl. Acad. Sci. USA, vol. 108, no. 52, pp. 20953–20958, Dec. 2011. doi: 10.1073/pnas.1109521108
    [46]
    T. Zaslavsky, “Signed graphs,” Discrete Appl. Math., vol. 4, no. 1, pp. 47–74, Jan. 1982. doi: 10.1016/0166-218X(82)90033-6
    [47]
    C. Altafini, “Consensus problems on networks with antagonistic interactions,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 935–946, Apr. 2013. doi: 10.1109/TAC.2012.2224251
    [48]
    M. E. Valcher and P. Misra, “On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions,” Syst. Control Lett., vol. 66, pp. 94–103, Apr. 2014. doi: 10.1016/j.sysconle.2014.01.006
    [49]
    H. W. Zhang and J. Chen, “Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches,” Int. J. Robust Nonlinear Control, vol. 27, no. 1, pp. 3–14, Jan. 2017. doi: 10.1002/rnc.3552
    [50]
    D. Cartwright and F. Harary, “Structural balance: A generalization of Heider's theory,” Psychol. Rev., vol. 63, no. 5, pp. 277–293, Oct. 1956. doi: 10.1037/h0046049
    [51]
    F. Harary, “A matrix criterion for structural balance,” Nav. Res. Logistics Quart., vol. 7, no. 2, pp. 195–199, Jun. 1960. doi: 10.1002/nav.3800070208
    [52]
    J. P. Hu and W. X. Zheng, “Bipartite consensus for multi-agent systems on directed signed networks,” in Proc. 52nd IEEE Conf. Decision and Control, Firenze, Italy, 2013, pp. 3451–3456.
    [53]
    D. Y. Meng, Z. Y. Meng, and Y. G. Hong, “Uniform convergence for signed networks under directed switching topologies,” Automatica, vol. 90, pp. 8–15, Apr. 2018. doi: 10.1016/j.automatica.2017.12.028
    [54]
    J. M. Hendrickx, “A lifting approach to models of opinion dynamics with antagonisms,” in Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, USA, 2014, pp. 2118–2123.
    [55]
    A. V. Proskurnikov, A. S. Matveev, and M. Cao, “Opinion dynamics in social networks with hostile camps: Consensus vs. polarization,” IEEE Trans. Autom. Control, vol. 61, no. 6, pp. 1524–1536, Jun. 2016. doi: 10.1109/TAC.2015.2471655
    [56]
    Z. Y. Meng, G. D. Shi, K. H. Johansson, M. Cao, and Y. G. Hong, “Behaviors of networks with antagonistic interactions and switching topologies,” Automatica, vol. 73, pp. 110–116, Nov. 2016. doi: 10.1016/j.automatica.2016.06.022
    [57]
    J. Liu, X. D. Chen, T. Başar, and M. A. Belabbas, “Exponential convergence of the discrete- and continuous-time Altafini models,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6168–6182, Dec. 2017. doi: 10.1109/TAC.2017.2700523
    [58]
    J. P. Hu and W. X. Zheng, “Emergent collective behaviors on coopetition networks,” Phys. Lett. A, vol. 378, no. 26–27, pp. 1787–1796, May 2014. doi: 10.1016/j.physleta.2014.04.070
    [59]
    W. G. Xia, M. Cao, and K. H. Johansson, “Structural balance and opinion separation in trust-mistrust social networks,” IEEE Trans. Control Netw. Syst., vol. 3, no. 1, pp. 46–56, Mar. 2016. doi: 10.1109/TCNS.2015.2437528
    [60]
    D. Y. Meng, M. J. Du, and Y. M. Jia, “Interval bipartite consensus of networked agents associated with signed digraphs,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3755–3770, Dec. 2016. doi: 10.1109/TAC.2016.2528539
    [61]
    D. Y. Meng, J. Q. Liang, Y. X. Wu, and Z. Y. Meng, “Connection of signed and unsigned networks based on solving linear dynamic systems,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 8, pp. 5174–5188, Aug. 2021. doi: 10.1109/TSMC.2019.2945538
    [62]
    D. Y. Meng, “Bipartite containment tracking of signed networks,” Automatica, vol. 79, pp. 282–289, May 2017. doi: 10.1016/j.automatica.2017.01.044
    [63]
    P. DeLellis, A. DiMeglio, F. Garofalo, and F. Lo Iudice, “Partial containment control over signed graphs,” in Proc. 18th European Control Conf., Naples, Italy, 2019, pp. 596–601.
    [64]
    D. Y. Meng, Z. Y. Meng, and Y. G. Hong, “Disagreement of hierarchical opinion dynamics with changing antagonisms,” SIAM J. Control Optim., vol. 57, no. 1, pp. 718–742, Jan. 2019. doi: 10.1137/17M1130344
    [65]
    J. P. Hu, Y. Z. Wu, T. Li, and B. K. Ghosh, “Consensus control of general linear multiagent systems with antagonistic interactions and communication noises,” IEEE Trans. Autom. Control, vol. 64, no. 5, pp. 2122–2127, May 2019. doi: 10.1109/TAC.2018.2872197
    [66]
    M. J. Du, D. Y. Meng, and Z. G. Wu, “Distributed controller design and analysis of second-order signed networks with communication de-lays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 9, pp. 4123–4137, Sep. 2021. doi: 10.1109/TNNLS.2020.3016946
    [67]
    M. J. Du, B. L. Ma, and D. Y. Meng, “Edge convergence problems on signed networks,” IEEE Trans. Cybern., vol. 49, no. 11, pp. 4029–4041, Nov. 2019. doi: 10.1109/TCYB.2018.2857854
    [68]
    M. J. Du, B. L. Ma, and D. Y. Meng, “Further results for edge convergence of directed signed networks,” IEEE Trans. Cybern., vol. 51, no. 12, pp. 5659–5670, Dec. 2021. doi: 10.1109/TCYB.2019.2933478
    [69]
    C. Altafini and G. Lini, “Predictable dynamics of opinion forming for networks with antagonistic interactions,” IEEE Trans. Autom. Control, vol. 60, no. 2, pp. 342–357, Feb. 2015. doi: 10.1109/TAC.2014.2343371
    [70]
    Y. Jiang, H. W. Zhang, and J. Chen, “Sign-consensus of linear multi-agent systems over signed directed graphs,” IEEE Trans. Industr. Electron., vol. 64, no. 6, pp. 5075–5083, Jun. 2017. doi: 10.1109/TIE.2016.2642878
    [71]
    Y. Jiang, H. W. Zhang, and J. Chen, “Sign-consensus over cooperative-antagonistic networks with switching topologies,” Int. J. Robust Nonlinear Control, vol. 28, no. 18, pp. 6146–6162, Dec. 2018. doi: 10.1002/rnc.4364
    [72]
    Z. Y. Sun and H. W. Zhang, “Sign-consensus of heterogenous multi-agent systems over switching graphs: An observer based approach,” in Proc. 16th Int. Conf. Control and Autom., Singapore, Singapore, 2020, pp. 135–140.
    [73]
    G. D. Shi, C. Altafini, and J. S. Baras, “Algebraic-graphical approach for signed dynamical networks,” in Proc. 56th IEEE Conf. Decision and Control, Melbourne, Australia, 2017, pp. 2009–2014.
    [74]
    C. Altafini, “Investigating stability of Laplacians on signed digraphs via eventual positivity,” in Proc. 58th IEEE Conf. Decision and Control, Nice, France, 2019, pp. 5044–5049.
    [75]
    Y. Yang, Q. D. Liu, D. Yue, and Q. L. Han, “Predictor-based neural dynamic surface control for bipartite tracking of a class of nonlinear multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 4, pp. 1791–1802, Apr. 2022. doi: 10.1109/TNNLS.2020.3045026
    [76]
    X. L. Shi, J. D. Cao, X. H. Yu, and G. H. Wen, “Finite-time stability of network systems with discontinuous dynamics over signed digraphs,” IEEE Trans. Autom. Control, vol. 65, no. 11, pp. 4874–4881, Nov. 2020. doi: 10.1109/TAC.2019.2960000
    [77]
    G. D. Shi, A. Proutiere, M. Johansson, J. S. Baras, and K. H. Johansson, “The evolution of beliefs over signed social networks,” Oper. Res., vol. 64, no. 3, pp. 585–604, Feb. 2016. doi: 10.1287/opre.2015.1448
    [78]
    G. D. Shi, A. Proutiere, M. Johansson, J. S. Baras, and K. H. Johansson, “Emergent behaviors over signed random dynamical networks: Relative-state-flipping model,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 369–379, Jun. 2017. doi: 10.1109/TCNS.2015.2506905
    [79]
    G. Chen, X. M. Duan, W. J. Mei, and F. Bullo, “Linear stochastic approximation algorithms and group consensus over random signed networks,” IEEE Trans. Autom. Control, vol. 64, no. 5, pp. 1874–1889, May 2019. doi: 10.1109/TAC.2018.2867257
    [80]
    P. Gong, “Exponential bipartite consensus of fractional-order non-linear multi-agent systems in switching directed signed networks,” IET Control Theory Appl., vol. 14, no. 17, pp. 2582–2591, Nov. 2020. doi: 10.1049/iet-cta.2019.1241
    [81]
    P. Gong and Q. L. Han, “Fixed-time bipartite consensus tracking of fractional-order multi-agent systems with a dynamic leader,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 10, pp. 2054–2058, Oct. 2020. doi: 10.1109/TCSII.2019.2947353
    [82]
    L. Z. Zhang and Y. Q. Yang, “Impulsive effects on bipartite quasi synchronization of extended Caputo fractional order coupled networks,” J. Franklin Inst., vol. 357, no. 7, pp. 4328–4348, May 2020. doi: 10.1016/j.jfranklin.2020.02.025
    [83]
    M. Shahvali, A. Azarbahram, M. B. Naghibi-Sistani, and J. Askari, “Bipartite consensus control for fractional-order nonlinear multi-agent systems: An output constraint approach,” Neurocomputing, vol. 397, pp. 212–223, Jul. 2020. doi: 10.1016/j.neucom.2020.02.036
    [84]
    C. Altafini and F. Ceragioli, “Signed bounded confidence models for opinion dynamics,” Automatica, vol. 93, pp. 114–125, Jul. 2018. doi: 10.1016/j.automatica.2018.03.064
    [85]
    H. D. Aghbolagh, M. Zamani, and Z. Y. Chen, “A new bounded confidence model seeking structural balance,” IEEE Control Syst. Lett., vol. 3, no. 3, pp. 541–546, Jul. 2019. doi: 10.1109/LCSYS.2019.2910296
    [86]
    G. He, J. Liu, Y. L. Wu, and J. A. Fang, “On bipartite consensus of bounded confidence models for opinion dynamics,” Int. J. Control,Autom. Syst., vol. 18, no. 2, pp. 303–312, Feb. 2020. doi: 10.1007/s12555-019-0138-x
    [87]
    D. Y. Meng, Y. M. Jia, and J. P. Du, “Finite-time consensus for multiagent systems with cooperative and antagonistic interactions,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 4, pp. 762–770, Apr. 2016. doi: 10.1109/TNNLS.2015.2424225
    [88]
    H. Wang, W. W. Yu, G. H. Wen, and G. R. Chen, “Finite-time bipartite consensus for multi-agent systems on directed signed networks,” IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 65, no. 12, pp. 4336–4348, Dec. 2018. doi: 10.1109/TCSI.2018.2838087
    [89]
    J. Q. Lu, Y. Q. Wang, X. C. Shi, and J. D. Cao, “Finite-time bipartite consensus for multiagent systems under detail-balanced antagonistic interactions,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 6, pp. 3867–3875, Jun. 2021. doi: 10.1109/TSMC.2019.2938419
    [90]
    B. D. Ning, X. H. Yu, G. H. Wen, and Z. W. Cao, “Finite-time bipartite tracking control for double-integrator networked systems with cooperative and antagonistic interactions,” IEEE Trans. Circuits Syst. I: Regul. Pap., vol. 67, no. 12, pp. 5223–5232, Dec. 2020. doi: 10.1109/TCSI.2020.2996312
    [91]
    Y. Zhao, Y. Zhou, Y. F. Liu, G. H. Wen, and P. F. Huang, “Fixed-time bipartite synchronization with a pre-appointed settling time over directed cooperative-antagonistic networks,” Automatica, vol. 123, Article No. 109301, Jan. 2021. doi: 10.1016/j.automatica.2020.109301
    [92]
    D. Y. Meng, “Dynamic distributed control for networks with cooperative-antagonistic interactions,” IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2311–2326, Aug. 2018. doi: 10.1109/TAC.2017.2763536
    [93]
    Y. X. Wu and D. Y. Meng, “Behavior analysis of directed signed networks under dynamic protocols,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 11, pp. 2562–2566, Nov. 2020. doi: 10.1109/TCSII.2019.2957543
    [94]
    C. Sun, G. Q. Hu, and L. H. Xie, “Controllability of multiagent networks with antagonistic interactions,” IEEE Trans. Autom. Control, vol. 62, no. 10, pp. 5457–5462, Oct. 2017. doi: 10.1109/TAC.2017.2697202
    [95]
    Y. Q. Guan and L. Wang, “Controllability of multi-agent systems with directed and weighted signed networks,” Syst. Control Lett., vol. 116, pp. 47–55, Jun. 2018. doi: 10.1016/j.sysconle.2018.04.010
    [96]
    S. S. Mousavi, M. Haeri, and M. Mesbahi, “Strong structural controllability of signed networks,” in Proc. 58th IEEE Conf. Decision and Control, Nice, France, 2019, pp. 4557–4562.
    [97]
    B. K. She, S. Mehta, C. Ton, and Z. Kan, “Controllability ensured leader group selection on signed multiagent networks,” IEEE Trans. Cybern., vol. 50, no. 1, pp. 222–232, Jan. 2020. doi: 10.1109/TCYB.2018.2868470
    [98]
    Y. Q. Guan, L. L. Tian, and L. Wang, “Controllability of switching signed networks,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 67, no. 6, pp. 1059–1063, Jun. 2020. doi: 10.1109/TCSII.2019.2926090
    [99]
    P. Jia, N. E. Friedkin, and F. Bullo, “The coevolution of appraisal and influence networks leads to structural balance,” IEEE Trans. Netw. Sci. Eng., vol. 3, no. 4, pp. 286–298, Oct.–Dec. 2016. doi: 10.1109/TNSE.2016.2600058
    [100]
    B. K. She and Z. Kan, “Algebraic topological characterizations of structural balance in signed graphs,” Automatica, vol. 107, pp. 61–67, Sep. 2019. doi: 10.1016/j.automatica.2019.05.029
    [101]
    W. J. Mei, P. Cisneros-Velarde, G. Chen, N. E. Friedkin, and F. Bullo, “Dynamic social balance and convergent appraisals via homophily and influence mechanisms,” Automatica, vol. 110, Article No. 108580, Dec. 2019. doi: 10.1016/j.automatica.2019.108580
    [102]
    E. Estrada, “Rethinking structural balance in signed social networks,” Discrete Appl. Math., vol. 268, pp. 70–90, Sep. 2019. doi: 10.1016/j.dam.2019.04.019
    [103]
    S. Sheykhali, A. H. Darooneh, and G. R. Jafari, “Partial balance in social networks with stubborn links,” Phys. A: Stat. Mech. Appl., vol. 548, Article No. 123882, Jun. 2020. doi: 10.1016/j.physa.2019.123882
    [104]
    Y. C. Cao, W. Ren, and M. Egerstedt, “Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks,” Automatica, vol. 48, no. 8, pp. 1586–1597, Aug. 2012. doi: 10.1016/j.automatica.2012.05.071
    [105]
    D. Y. Meng, M. J. Du, and Y. X. Wu, “Extended structural balance theory and method for cooperative-antagonistic networks,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2147–2154, May 2020. doi: 10.1109/TAC.2019.2937759
    [106]
    D. Y. Meng, Y. X. Wu, and M. J. Du, “Extended structural balance and disagreement behaviors for switching networks with antagonistic interactions,” IEEE Trans. Control Netw. Syst., vol. 8, no. 1, pp. 77–88, Mar. 2021. doi: 10.1109/TCNS.2020.3034531
    [107]
    D. Y. Meng, “Convergence analysis of directed signed networks via an M-matrix approach,” Int. J. Control, vol. 91, no. 4, pp. 827–847, Apr. 2018. doi: 10.1080/00207179.2017.1294263
    [108]
    W. J. Rugh, Linear System Theory. 2nd ed. Upper Saddle River, USA: Prentice-Hall, 1996.
    [109]
    M. Ji, G. Ferrari-Trecate, M. Egerstedt, and A. Buffa, “Containment control in mobile networks,” IEEE Trans. Autom. Control, vol. 53, no. 8, pp. 1972–1975, Sep. 2008. doi: 10.1109/TAC.2008.930098
    [110]
    Z. Kan, J. R. Klotz, E. L. Pasiliao Jr., and W. E. Dixon, “Containment control for a social network with state-dependent connectivity,” Automatica, vol. 56, pp. 86–92, Jun. 2015. doi: 10.1016/j.automatica.2015.03.026
    [111]
    R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge, UK: Cambridge University Press, 1991.
    [112]
    R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1985.
    [113]
    J. M. Hendrickx and J. N. Tsitsiklis, “Convergence of type-symmetric and cut-balanced consensus seeking systems,” IEEE Trans. Autom. Control, vol. 58, no. 1, pp. 214–218, Jan. 2013. doi: 10.1109/TAC.2012.2203214
    [114]
    K. L. Moore, T. L. Vincent, F. Lashhab, and C. Liu, “Dynamic consensus networks with application to the analysis of building thermal processes,” IFAC Proc. Vol., vol. 44, no. 1, pp. 3078–3083, Jan. 2011. doi: 10.3182/20110828-6-IT-1002.02549
    [115]
    K. K. Oh, F. Lashhab, K. L. Moore, T. L. Vincent, and H. S. Ahn, “Consensus of positive real systems cascaded with a single integrator,” Int. J. Robust Nonlinear Control, vol. 25, no. 3, pp. 418–429, Feb. 2015. doi: 10.1002/rnc.3093
    [116]
    D. Y. Meng, W. L. Niu, X. L. Ding, and L. Zhao, “Network-to-network control over heterogeneous topologies: A dynamic graph approach,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 50, no. 5, pp. 1885–1896, May 2020. doi: 10.1109/TSMC.2018.2791576
    [117]
    F. Chung, A. Tsiatas, and W. S. Xu, “Dirichlet PageRank and ranking algorithms based on trust and distrust,” Internet Math., vol. 9, no. 1, pp. 113–134, Jan. 2013. doi: 10.1080/15427951.2012.678194
    [118]
    H. Ishii and R. Tempo, “The PageRank problem, multiagent consensus, and web aggregation: A systems and control viewpoint,” IEEE Control Syst. Mag., vol. 34, no. 3, pp. 34–53, Jun. 2014. doi: 10.1109/MCS.2014.2308672
    [119]
    R. Lozano, B. Brogliato, O. Egeland, and B. Maschke, Dissipative Systems Analysis and Control: Theory and Applications. London, UK: Springer-Verlag, 2000.
    [120]
    J. Chen, K. H. Lundberg, D. E. Davison, and D. S. Bernstein, “The final value theorem revisited-infinite limits and irrational functions,” IEEE Control Syst. Mag., vol. 27, no. 3, pp. 97–99, Jun. 2007. doi: 10.1109/MCS.2007.365008

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (860) PDF downloads(89) Cited by()

    Highlights

    • The disagreement behaviors generally emerge in signed networks due to the existence of antagonistic interactions among nodes, which are greatly different from the agreement-based behaviors of unsigned networks with only cooperative interactions among nodes. This paper reviews several disagreement behaviors in signed networks under the single-integrator linear dynamics, where two classes of topologies, namely, the static topology and the dynamic topology, are both involved
    • For the static signed networks with adjacency weights as (time-varying) scalars, both the convergence behaviors and the fluctuation behaviors subject to fixed topologies and switching topologies are discussed, respectively. Some brief introductions on the disagreement behaviors of general time-varying signed networks are also reported. Simultaneously, several classes of behavior analysis approaches with respect to different topology conditions are introduced
    • For the dynamic signed networks with adjacency weights as transfer functions or linear time-invariant systems, the specific descriptions and characteristics of them are presented such that their disagreement behaviors can be characterized by concerning the related static signed graphs. Moreover, their applications to the behavior analysis of static signed networks in the presence of high-order dynamics or communication delays are also provided

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return