IEEE/CAA Journal of Automatica Sinica
Citation:  Y. M. Lei, H. P. Zhu, J. P. Zhang, and H. M. Shan, “Meta ordinal regression forest for medical image classification with ordinal labels,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1233–1247, Jul. 2022. doi: 10.1109/JAS.2022.105668 
[1] 
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2016.

[2] 
L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. McBride, and W. Sieh, “Deep learning to improve breast cancer detection on screening mammography,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.

[3] 
W. Zhu, C. Liu, W. Fan, and X. Xie, “DeepLung: 3D deep convolutional nets for automated pulmonary nodule detection and classification,” arXiv preprint arXiv: 1709.05538, 2017.

[4] 
W. Shen, Y. Guo, Y. Wang, K. Zhao, B. Wang, and A. L. Yuille, “Deep regression forests for age estimation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2018, pp. 2304–2313.

[5] 
P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo, “Deep neural decision forests,” in Proc. IEEE Int. Conf. Computer Vision, 2015, pp. 1467–1475.

[6] 
Z. Zhang and Y. Pang, “CGNet: Crossguidance network for semantic segmentation,” Science China Information Science, vol. 63, no. 2, pp. 45–60, 2020. doi: 10.1007/s1143201927187

[7] 
Y. Lei, J. Zhang, and H. Shan, “Strided selfsupervised lowdose CT denoising for lung nodule classification,” Phenomics, vol. 1, no. 6, pp. 257–268, 2021. doi: 10.1007/s4365702100025y

[8] 
Y. Lei, Y. Tian, H. Shan, J. Zhang, G. Wang, and M. K. Kalra, “Shape and marginaware lung nodule classification in lowdose CT images via soft activation mapping,” Medical Image Analysis, vol. 60, p. 101628, 2020.

[9] 
S. G. Armato III, G. McLennan, L. Bidaut, M. F. McNittGray, C. R. Meyer, A. P. Reeves, et al., “The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans,” Medical Physics, vol. 38, no. 2, pp. 915–931, 2011. doi: 10.1118/1.3528204

[10] 
H. Shan, G. Wang, M. K. Kalra, R. de Souza, and J. Zhang, “Enhancing transferability of features from pretrained deep neural networks for lung nodule classification,” in Proc. Int. Conf. Fully ThreeDimensional Image Reconstruction in Radiology and Nuclear Medicine, 2017, pp. 65–68.

[11] 
S. Hussein, R. Gillies, K. Cao, Q. Song, and U. Bagci, “TumorNet: Lung nodule characterization using multiview convolutional neural network with Gaussian process,” in Proc. IEEE 14th Int. Symp. Biomedical Imaging, 2017, pp. 1007–1010.

[12] 
W. Shen, M. Zhou, F. Yang, C. Yang, and J. Tian, “Multiscale convolutional neural networks for lung nodule classification,” in Proc. Int. Conf. Information Processing Medical Imaging, 2015, pp. 588–599.

[13] 
Q. Dou, H. Chen, L. Yu, J. Qin, and P.A. Heng, “Multilevel contextual 3D CNNs for false positive reduction in pulmonary nodule detection,” IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1558–1567, 2017. doi: 10.1109/TBME.2016.2613502

[14] 
A. A. A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S. J. van Riel, M. M. W. Wille, M. Naqibullah, C. I. Sánchez, and B. van Ginneken, “Pulmonary nodule detection in CT images: False positive reduction using multiview convolutional networks,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1160–1169, 2016. doi: 10.1109/TMI.2016.2536809

[15] 
B. Wu, X. Sun, L. Hu, and Y. Wang, “Learning with unsure data for medical image diagnosis,” in Proc. IEEE Int. Conf. Computer Vision, 2019, pp. 10590–10599.

[16] 
P. A. Gutiérrez, M. PerezOrtiz, J. SanchezMonedero, F. FernandezNavarro, and C. HervasMartinez, “Ordinal regression methods: Survey and experimental study,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 1, pp. 127–146, 2015.

[17] 
E. Frank and M. Hall, “A simple approach to ordinal classification,” in Proc. European Conf. Machine Learning. Springer, 2001, pp. 145–156.

[18] 
X. Liu, Y. Zou, Y. Song, C. Yang, J. You, and B. K Vijaya Kumar, “Ordinal regression with neuron stickbreaking for medical diagnosis,” in Proc. European Conf. Computer Vision, 2018, pp. 335–344.

[19] 
C. Beckham and C. Pal, “Unimodal probability distributions for deep ordinal classification,” in Proc. Int. Conf. Machine Learning, 2017, pp. 411–419.

[20] 
R. Diaz and A. Marathe, “Soft labels for ordinal regression,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2019, pp. 4738–4747.

[21] 
W. Shen, K. Zhao, Y. Guo, and A. L. Yuille, “Label distribution learning forests,” in Proc. Advances Neural Information Processing Systems, 2017, pp. 834–843.

[22] 
H. Zhu, H. Shan, Y. Zhang, L. Che, X. Xu, J. Zhang, J. Shi, and F.Y. Wang, “Convolutional ordinal regression forest for image ordinal estimation,” IEEE Trans. Neural Netw. Learn. Syst., 2021. DOI: 10.1109/TNNLS.2021.3055816

[23] 
L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. doi: 10.1023/A:1010933404324

[24] 
J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “MetaWeightNet: Learning an explicit mapping for sample weighting,” in Proc. Advances Neural Information Processing Systems, 2019, pp. 1919–1930.

[25] 
S. Liu, A. Davison, and E. Johns, “Selfsupervised generalisation with meta auxiliary learning,” in Proc. Advances Neural Information Processing Systems, 2019, pp. 1679–1689.

[26] 
Y. Lei, H. Zhu, J. Zhang, and H. Shan, “Meta ordinal regression forest for learning with unsure lung nodules,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, 2020, pp. 442–445.

[27] 
W. AlDhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of breast ultrasound images,” Data in Brief, vol. 28, p. 104863, 2020.

[28] 
X. Liu, F. Hou, H. Qin, and A. Hao, “A CADe system for nodule detection in thoracic CT images based on artificial neural network,” Science China Information Science, vol. 60, no. 7, p. 072106, 2017.

[29] 
G. Cao, T. Huang, K. Hou, W. Cao, P. Liu, and J. Zhang, “3D convolutional neural networks fusion model for lung nodule detection onclinical CT scans,” in Proc. IEEE Int. Conf. Bioinformatics and Biomedicine, 2018, pp. 973–978.

[30] 
L. Fang, Z. Wang, Z. Chen, F. Jian, S. Li, and H. He, “3D shape reconstruction of lumbar vertebra from two Xray images and a CT model,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1124–1133, 2019.

[31] 
A. Muzahid, W. Wan, F. Sohel, L. Wu, and L. Hou, “CurveNet: Curvaturebased multitask learning deep networks for 3D object recognition,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 6, pp. 1177–1187, 2020.

[32] 
O. Ronneberger, P. Fischer, and T. Brox, “UNet: Convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. Medical Image Computing and ComputerAssisted Intervention, 2015, pp. 234–241.

[33] 
H. Shan, Y. Zhang, Q. Yang, U. Kruger, M. K. Kalra, L. Sun, W. Cong, and G. Wang, “3D convolutional encoderdecoder network for lowdose CT via transfer learning from a 2D trained network,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1522–1534, 2018. doi: 10.1109/TMI.2018.2832217

[34] 
N. Ibtehaz and M. S. Rahman, “MultiResUNet: Rethinking the UNet architecture for multimodal biomedical image segmentation,” Neural Networks, vol. 121, pp. 74–87, 2020. doi: 10.1016/j.neunet.2019.08.025

[35] 
H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.W. Chen, and J. Wu, “UNet 3+: A fullscale connected UNet for medical image segmentation,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing. 2020, pp. 1055–1059.

[36] 
W. Wu, G. Liu, K. Liang, and H. Zhou, “Pneumothorax segmentation in routine computed tomography based on deep neural networks,” in Proc. IEEE 4th Int. Conf. Intelligent Autonomous Systems, 2021, pp. 78–83.

[37] 
A. Ciritsis, C. Rossi, M. Eberhard, M. Marcon, A. S. Becker, and A. Boss, “Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decisionmaking,” European Radiology, vol. 29, no. 10, pp. 5458–5468, 2019. doi: 10.1007/s00330019061187

[38] 
C. D. L. Nascimento, S. D. d. S. Silva, T. A. d. Silva, W. C. d. A. Pereira, M. G. F. Costa, and C. F. F. Costa Filho, “Breast tumor classification in ultrasound images using support vector machines and neural networks,” Research on Biomedical Engineering, vol. 32, no. 3, pp. 283–292, 2016. doi: 10.1590/24464740.04915

[39] 
Y. Wang, E. J. Choi, Y. Choi, H. Zhang, G. Y. Jin, and S.B. Ko, “Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning,” Ultrasound in Medicine &Biology, vol. 45, no. 5, pp. 1119–1132, 2020.

[40] 
Q. Sun, X. Lin, Y. Zhao, L. Li, K. Yan, D. Liang, D. Sun, and Z.C. Li, “Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: Don’t forget the peritumoral region,” Frontiers in Oncology, vol. 10, pp. 53–64, 2020. doi: 10.3389/fonc.2020.00053

[41] 
Q. Hu, H. M. Whitney, and M. L. Giger, “A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI,” Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020. doi: 10.1038/s41598019568474

[42] 
J.Y. Chiao, K.Y. Chen, K. Y.K. Liao, P.H. Hsieh, G. Zhang, and T.C. Huang, “Detection and classification the breast tumors using mask RCNN on sonograms,” Medicine, vol. 98, no. 19, 2019.

[43] 
N. Wu, J. Phang, J. Park, Y. Shen, Z. Huang, M. Zorin, S. Jastrzkebski, et al., “Deep neural networks improve radiologists’ performance in breast cancer screening,” IEEE Trans. Med. Imag., vol. 39, no. 4, pp. 1184–1194, 2019.

[44] 
A. AkselrodBallin, M. Chorev, Y. Shoshan, A. Spiro, A. Hazan, R. Melamed, et al., “Predicting breast cancer by applying deep learning to linked health records and mammograms,” Radiology, vol. 292, no. 2, pp. 331–342, 2019. doi: 10.1148/radiol.2019182622

[45] 
N. Dhungel, G. Carneiro, and A. P. Bradley, “The automated learning of deep features for breast mass classification from mammograms,” in Proc. Int. Conf. Medical Image Computing and ComputerAssisted Intervention, Springer, 2016, pp. 106–114.

[46] 
Y. B. Hagos, A. G. Mérida, and J. Teuwen, “Improving breast cancer detection using symmetry information with deep learning,” in Proc. Image Analysis for Moving Organ, Breast, and Thoracic Images. Springer, 2018, pp. 90–97.

[47] 
K. Simonyan and A. Zisserman, “Very deep convolutional networks for largescale image recognition,” in Proc. Int. Conf. Learning Representations, 2015, pp. 1–14.

[48] 
H. Zhu, Y. Zhang, G. Li, J. Zhang, and H. Shan, “Ordinal distribution regression for gaitbased age estimation,” Science China Information Science, vol. 63, no. 2, pp. 17–30, 2020. doi: 10.1007/s1143201927334

[49] 
G. Guo, H. Wang, Y. Yan, L. Zhang, and B. Li, “Large margin deep embedding for aesthetic image classification,” Science China Information Science, vol. 63, no. 1, pp. 1–3, 2020.

[50] 
C. Finn, P. Abbeel, and S. Levine, “Modelagnostic metalearning for fast adaptation of deep networks,” in Proc. Int. Conf. Machine Learning, PMLR, 2017, pp. 1126–1135.

[51] 
M. A. Jamal and G.J. Qi, “Task agnostic metalearning for fewshot learning,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2019, pp. 11719–11727.

[52] 
B. C. Csáji, “Approximation with artificial neural networks,” Faculty of Sciences, Etvs Lornd University, Hungary, vol. 24, no. 48, p. 7, 2001.

[53] 
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv: 1412.6980, 2014.

[54] 
K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in classification,” arXiv preprint arXiv: 1702.05659, 2017.

[55] 
J. Zhang, Y. Xie, Q. Wu, and Y. Xia, “Medical image classification using synergic deep learning,” Medical Image Analysis, vol. 54, pp. 10–19, 2019. doi: 10.1016/j.media.2019.02.010

[56] 
E. Pesce, S. J. Withey, P.P. Ypsilantis, R. Bakewell, V. Goh, and G. Montana, “Learning to detect chest radiographs containing pulmonary lesions using visual attention networks,” Medical Image Analysis, vol. 53, pp. 26–38, 2019. doi: 10.1016/j.media.2018.12.007

[57] 
A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” 2017.

[58] 
F. Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in Statistics. New York, USA: Springer, 1992, pp. 196–202.

[59] 
S. Xuan, G. Liu, and Z. Li, “Refined weighted random forest and its application to credit card fraud detection,” in Proc. Int. Conf. Computational Social Networks. Springer, 2018, pp. 343–355.

[60] 
Y. Liang, M. Li, C. Jiang, and G. Liu, “CEModule: A computation efficient module for lightweight convolutional neural networks,” IEEE Trans. Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS2021.3133127

[61] 
Y. Qin, C. Yan, G. Liu, Z. Li, and C. Jiang, “Pairwise Gaussian loss for convolutional neural networks,” IEEE Trans. Industrial Informatics, vol. 16, no. 10, pp. 6324–6333, 2020. doi: 10.1109/TII.2019.2963434
