A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
L. Y. Guo, X. L. Shi, and J. D. Cao, “Exponential convergence of primal-dual dynamical system for linear constrained optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 745–748, Apr. 2022. doi: 10.1109/JAS.2022.105485
Citation: L. Y. Guo, X. L. Shi, and J. D. Cao, “Exponential convergence of primal-dual dynamical system for linear constrained optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 745–748, Apr. 2022. doi: 10.1109/JAS.2022.105485

Exponential Convergence of Primal-Dual Dynamical System for Linear Constrained Optimization

doi: 10.1109/JAS.2022.105485
  • loading
  • [1]
    W. Lin, Y. Wang, C. Li, and X. Yu, “Distributed resource allocation via accelerated saddle point dynamics,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 9, pp. 1588–1599, 2021. doi: 10.1109/JAS.2021.1004114
    [2]
    C. Xu and X. He, “A Fully distributed approach to optimal energy scheduling of users and generators considering a novel combined neurodynamic algorithm in smart grid,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 7, pp. 1325–1335, 2021. doi: 10.1109/JAS.2021.1004048
    [3]
    Z. Liu, Y. Yuan, X. Guan and X. Li, “An approach of distributed joint optimization for cluster-based wireless sensor networks,” IEEE/CAA Journal of Automatica Sinica, vol. 2, no. 3, pp. 267–273, 2015. doi: 10.1109/JAS.2015.7152660
    [4]
    J. Cortés and S. K. Niederländer, “Distributed coordination for nonsmooth convex optimization via saddle-point dynamics,” J. Nonlinear Sci., vol. 29, pp. 1247–1272, 2019. doi: 10.1007/s00332-018-9516-4
    [5]
    G. Qu and N. Li, “On the exponential stability of primal-dual gradient dynamics,” IEEE Control Syst. Lett., vol. 3, no. 1, pp. 43–48, 2019. doi: 10.1109/LCSYS.2018.2851375
    [6]
    Y. Tang, G. Qu, and N. Li, “Semi-global exponential stability of augmented primal-dual gradient dynamics for constrained convex optimization,” Syst. Control Lett., vol. 144, Article No. 104754, 2020. doi: 10.1016/j.sysconle.2020.104754
    [7]
    X. Chen and N. Li, “Exponential stability of primal-dual gradient dynamics with non-strong convexity, ” in Proc. American Control Conf., IEEE, 2020, pp. 1612–1618.
    [8]
    Z. Wang, W. Wei, C. Zhao, Z. Ma, Z. Zheng, Y. Zhang, and F. Liu, “Exponential stability of partial primal-dual gradient dynamics with nonsmooth objective functions,” Automatica, vol. 129, Article No. 109585, 2021. doi: 10.1016/j.automatica.2021.109585
    [9]
    K. Garg and D. Panagou, “Fixed-time stable gradient flows: Applications to continuous-time optimization,” IEEE Trans. Autom. Control, vol. 66, no. 5, pp. 2002–2015, 2021. doi: 10.1109/TAC.2020.3001436
    [10]
    S. A. Alghunaim and A. H. Sayed, “Linear convergence of primal-dual gradient methods and their performance in distributed optimization,” Automatica, vol. 117, Article No. 109003, 2020. doi: 10.1016/j.automatica.2020.109003
    [11]
    W. Bian and X. Xue, “Asymptotic behavior analysis on multivalued evolution inclusion with projection in Hilbert space,” Optimization, vol. 64, no. 4, pp. 853–875, 2015. doi: 10.1080/02331934.2013.811668
    [12]
    N. T. T. Ha, J. J. Strodiot, and P. T. Vuong, “On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequalities,” Optim. Lett., vol. 12, pp. 1625–1638, 2018. doi: 10.1007/s11590-018-1230-5
    [13]
    I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence of first order methods for non-strongly convex optimization,” Math. Program., vol. 175, pp. 69–107, 2019. doi: 10.1007/s10107-018-1232-1
    [14]
    C. Shi and G. Yang, “Augmented lagrange algorithms for distributed optimization over multi-agent networks via edge-based method,” Automatica, vol. 94, pp. 55–62, 2018. doi: 10.1016/j.automatica.2018.04.010
    [15]
    S. S. Kia, J. Cortés, and S. Martínez, “Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication,” Automatica, vol. 55, pp. 254–264, 2015. doi: 10.1016/j.automatica.2015.03.001
    [16]
    Q. Liu and J. Wang, “A second-order multi-agent network for boundconstrained distributed optimization,” IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3310–3315, 2015. doi: 10.1109/TAC.2015.2416927
    [17]
    B. Gharesifard and J. Cortés, “Distributed continuous-time convex optimization on weight-balanced digraphs,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 781–786, 2014. doi: 10.1109/TAC.2013.2278132
    [18]
    I. Necoara and V. Nedelcu, “On linear convergence of a distributed dual gradient algorithm for linearly constrained separable convex problems,” Automatica, vol. 5, no. 5, pp. 209–216, 2015.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (326) PDF downloads(141) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return