A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. A. Qiu, Z. Y. Lu, and S. P. Fang, “A short-term precipitation prediction model based on spatiotemporal convolution network and ensemble empirical mode decomposition,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 738–740, Apr. 2022. doi: 10.1109/JAS.2022.105479
Citation: Y. A. Qiu, Z. Y. Lu, and S. P. Fang, “A short-term precipitation prediction model based on spatiotemporal convolution network and ensemble empirical mode decomposition,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 738–740, Apr. 2022. doi: 10.1109/JAS.2022.105479

A Short-Term Precipitation Prediction Model Based on Spatiotemporal Convolution Network and Ensemble Empirical Mode Decomposition

doi: 10.1109/JAS.2022.105479
  • loading
  • [1]
    E. Hawkins and R. Sutton, “The potential to narrow uncertainty in projections of regional precipitation change,” Climate Dynamics, vol. 37, no. 1–2, pp. 407–418, 2011. doi: 10.1007/s00382-010-0810-6
    [2]
    N. Ban, J. Schmidli, and C. SchäR, “Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?” Geophysical Research Letters, vol. 42, no. 4, pp. 1165–1172, 2015. doi: 10.1002/2014GL062588
    [3]
    L. F. Richardson, Weather Prediction by Numerical Process. UK: Cambridge University Press, 2007.
    [4]
    W. Zhang, H. Zhang, J. Liu, K. Li, D. Yang, and H. Tian, “Weather prediction with multiclass support vector machines in the fault detection of photovoltaic system,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3, pp. 520–525, 2017. doi: 10.1109/JAS.2017.7510562
    [5]
    Z. Zeng, W. W. Hsieh, A. Shabbar, and W. R. Burrows, “Seasonal prediction of winter extreme precipitation over canada by support vector regression,” Hydrology and Earth System Sciences, vol. 15, no. 1, pp. 65–74, 2010.
    [6]
    S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, “Deep learning and time series-to-image encoding for financial forecasting,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 3, pp. 683–692, 2020. doi: 10.1109/JAS.2020.1003132
    [7]
    Y. Ran, H. Wang, L. Tian, J. Wu, and X. Li, “Precipitation cloud identification based on faster-rcnn for doppler weather radar,” EURASIP Journal on Wireless Communications and Networking, vol. 2021, no. 1, pp. 1–20, 2021. doi: 10.1186/s13638-020-01861-8
    [8]
    M. Defferrard, X. Bresson, and Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral filtering,” Advances in Neural Information Processing Systems, vol. 29, pp. 3844–3852, 2016.
    [9]
    Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,” arXiv preprint arXiv: 1707.01926, 2017.
    [10]
    L. Egghe and L. Leydesdorff, “The relation between pearson’s correlation coefficient r and salton’s cosine measure,” Journal of the American Society for Information Science &Technology, vol. 60, no. 5, pp. 1027–1036, 2014.
    [11]
    L. Zhao, Y. Song, C. Zhang, Y. Liu, Wang, T. Lin, M. Deng, and H. Li, “T-GCN: A temporal graph convolutional network for traffic prediction,” IEEE Trans. Intelligent Transportation Systems, vol. 21, no. 9, pp. 3848–3858, 2019.
    [12]
    Y. Chen, Z. Dong, Y. Wang, J. Su, Z. Han, D. Zhou, K. Zhang, Y. Zhao, and Y. Bao, “Short-term wind speed predicting framework based on eemd-ga-lstm method under large scaled wind history,” Energy Conversion and Management, vol. 227, Article No. 113559, 2021. doi: 10.1016/j.enconman.2020.113559
    [13]
    C. Wang, “On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan,” Weather &Forecasting, vol. 29, no. 4, pp. 788–798, 2014.
    [14]
    N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered graph convolutions for 3D shape analysis,” in Proc. IEEE conf. Computer Vision Pattern Recognition, 2018, pp. 2598–2600.
    [15]
    R. Dey and F. M. Salem, “Gate-variants of gated recurrent unit (GRU) neural networks,” in Proc. IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 2017, pp. 1597–1600.
    [16]
    C. Guan, “Experiments and evaluations of global medium range forecast system of t639l60,” Meteorological Monthly, vol. 34, no. 6, pp. 11–16, 2008.
    [17]
    H. Zhang, J. Chen, X. Zhi, K. Long, and Y. Wang, “Design and comparison of perturbation schemes for grapes meso based ensemble forecast,” Trans. Atmos. Sci, vol. 37, no. 3, pp. 276–284, 2014.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (625) PDF downloads(133) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return