A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. K. Peng, B. Fan, Z. H. Tu, W. Zhang, and W. X. Liu, “Distributed periodic event-triggered optimal control of DC microgrids based on virtual incremental cost,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 624–634, Apr. 2022. doi: 10.1109/JAS.2022.105452
Citation: J. K. Peng, B. Fan, Z. H. Tu, W. Zhang, and W. X. Liu, “Distributed periodic event-triggered optimal control of DC microgrids based on virtual incremental cost,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 624–634, Apr. 2022. doi: 10.1109/JAS.2022.105452

Distributed Periodic Event-Triggered Optimal Control of DC Microgrids Based on Virtual Incremental Cost

doi: 10.1109/JAS.2022.105452
Funds:  This work was supported by the U.S. Office of Naval Research (N00014-21-1-2175)
More Information
  • This article presents a distributed periodic event-triggered (PET) optimal control scheme to achieve generation cost minimization and average bus voltage regulation in DC microgrids. In order to accommodate the generation constraints of the distributed generators (DGs), a virtual incremental cost is firstly designed, based on which an optimality condition is derived to facilitate the control design. To meet the discrete-time (DT) nature of modern control systems, the optimal controller is directly developed in the DT domain. Afterward, to reduce the communication requirement among the controllers, a distributed event-triggered mechanism is introduced for the DT optimal controller. The event-triggered condition is detected periodically and therefore naturally avoids the Zeno phenomenon. The closed-loop system stability is proved by the Lyapunov synthesis for switched systems. The generation cost minimization and average bus voltage regulation are obtained at the equilibrium point. Finally, switch-level microgrid simulations validate the performance of the proposed optimal controller.

     

  • loading
  • [1]
    T. Meng, Z. Lin, and Y. A. Shamash, “Distributed cooperative control of battery energy storage systems in DC microgrids,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 606–616, 2021. doi: 10.1109/JAS.2021.1003874
    [2]
    J. Peng, B. Fan, J. Duan, Q. Yang, and W. Liu, “Adaptive decentralized output-constrained control of single-bus DC microgrids,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 424–432, 2019. doi: 10.1109/JAS.2019.1911387
    [3]
    F. Chang, X. Cui, M. Wang, W. Su, and A. Q. Huang, “Large-signal stability criteria in DC power grids with distributed-controlled converters and constant power loads,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 5273–5287, 2020. doi: 10.1109/TSG.2020.2998041
    [4]
    B. Fan, J. Peng, J. Duan, Q. Yang, and W. Liu, “Distributed control of multiple-bus microgrid with paralleled distributed generators,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 676–684, 2019. doi: 10.1109/JAS.2019.1911477
    [5]
    M. Saleh, Y. Esa, and A. A. Mohamed, “Communication-based control for DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2180–2195, 2019. doi: 10.1109/TSG.2018.2791361
    [6]
    T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids–Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–4891, 2016.
    [7]
    T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids–Part Ⅱ: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528–3549, 2016. doi: 10.1109/TPEL.2015.2464277
    [8]
    J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. De Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids–A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, 2011. doi: 10.1109/TIE.2010.2066534
    [9]
    M. Cucuzzella, S. Trip, C. D. Persis, X. Cheng, A. Ferrara, and A. van der Schaft, “A robust consensus algorithm for current sharing and voltage regulation in DC microgrids,” IEEE Trans. Control Syst. Technol., vol. 27, no. 4, pp. 1583–1595, 2019. doi: 10.1109/TCST.2018.2834878
    [10]
    Z. Wang, W. Wu, and B. Zhang, “A distributed control method with minimum generation cost for DC microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1462–1470, 2016. doi: 10.1109/TEC.2016.2584649
    [11]
    J. Ma, L. Yuan, Z. Zhao, and F. He, “Transmission loss optimization-based optimal power flow strategy by hierarchical control for DC microgrids,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1952–1963, 2017. doi: 10.1109/TPEL.2016.2561301
    [12]
    Y. Li, Z. Zhang, T. Dragičević, and J. Rodriguez, “A unified distributed cooperative control of DC microgrids using consensus protocol,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1880–1892, 2021. doi: 10.1109/TSG.2020.3041378
    [13]
    S. Moayedi and A. Davoudi, “Unifying distributed dynamic optimization and control of islanded DC microgrids,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2329–2346, 2016.
    [14]
    Z. Wang, F. Liu, Y. Chen, S. H. Low, and S. Mei, “Unified distributed control of stand-alone DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1013–1024, 2017.
    [15]
    J. Peng, B. Fan, and W. Liu, “Voltage-based distributed optimal control for generation cost minimization and bounded bus voltage regulation in DC microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 106–116, 2021. doi: 10.1109/TSG.2020.3013303
    [16]
    L. Ding, L. Y. Wang, G. Y. Yin, W. X. Zheng, and Q. Han, “Distributed energy management for smart grids with an event-triggered communication scheme,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 1950–1961, 2019. doi: 10.1109/TCST.2018.2842208
    [17]
    W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to event-triggered and self-triggered control,” in Proc. IEEE Conf. Decis. Control, 2012, pp. 3270–3285.
    [18]
    D. Pullaguram, S. Mishra, and N. Senroy, “Event-triggered communication based distributed control scheme for DC microgrid,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5583–5593, 2018. doi: 10.1109/TPWRS.2018.2799618
    [19]
    R. Han, L. Meng, J. M. Guerrero, and J. C. Vasquez, “Distributed nonlinear control with event-triggered communication to achieve currentsharing and voltage regulation in DC microgrids,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6416–6433, 2018. doi: 10.1109/TPEL.2017.2749518
    [20]
    J. Peng, B. Fan, Q. Yang, and W. Liu, “Distributed event-triggered control of DC microgrids,” IEEE Syst. J, vol. 15, no. 2, pp. 2504–2514, 2021. doi: 10.1109/JSYST.2020.2994532
    [21]
    B. Fan, J. Peng, Q. Yang, and W. Liu, “Distributed periodic eventtriggered algorithm for current sharing and voltage regulation in DC microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 1, pp. 577–589, 2020. doi: 10.1109/TSG.2019.2926108
    [22]
    J. Peng, B. Fan, H. Xu, and W. Liu, “Discrete-time self-triggered control of DC microgrids with data dropouts and communication delays,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 4626–4636, 2020. doi: 10.1109/TSG.2020.3000138
    [23]
    M. Shahidehpour, M. Shi, X. Chen, J. Wen, and Q. Zhou, “Optimal consensus-based event-triggered control strategy for resilient DC microgrids,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1807–1818, 2021.
    [24]
    J. Cao, W. Du, H. F. Wang, and S. Q. Bu, “Minimization of transmission loss in meshed AC/DC grids with VSC-MTDC networks,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3047–3055, 2013. doi: 10.1109/TPWRS.2013.2241086
    [25]
    W. D. Stevenson, Elements of Power System Analysis, 4th ed. New York, NY, USA: McGraw-Hill, 1982.
    [26]
    J. P. LaSalle, The Stability and Control of Discrete Processes. New York, NY, USA: Springer-Verlag, 1986, vol. 62.
    [27]
    D. Liberzon, Switching in Systems and Control. Boston, MA, USA: Springer, 2003.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (601) PDF downloads(121) Cited by()

    Highlights

    • A distributed periodic event-triggered optimal control scheme for dc microgrids
    • Achieve generation cost minimization and average bus voltage regulation simultaneously
    • The discrete-time design is suitable for digital controllers and communication systems
    • The distributed event-triggered mechanism reduces communication requirements

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return