A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
G. R. Chen, “Searching for best network topologies with optimal synchronizability: A brief review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 573–577, Apr. 2022. doi: 10.1109/JAS.2022.105443
Citation: G. R. Chen, “Searching for best network topologies with optimal synchronizability: A brief review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 573–577, Apr. 2022. doi: 10.1109/JAS.2022.105443

Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review

doi: 10.1109/JAS.2022.105443
Funds:  This research was supported by the Hong Kong Research Grants Council under the GRF Grant CityU11206320
More Information
  • The Laplacian eigenvalue spectrum of a complex network contains a great deal of information about the network topology and dynamics, particularly affecting the network synchronization process and performance. This article briefly reviews the recent progress in the studies of network synchronizability, regarding its spectral criteria and topological optimization, and explores the role of higher-order topologies in measuring the optimal synchronizability of large-scale complex networks.

     

  • loading
  • [1]
    M. Newman, Networks: An Introduction, Oxford Univ. Press, 2010.
    [2]
    G. Chen, X. F. Wang and X. Li, Introduction to Complex Networks: Models, Structures and Dynamics. Higher Education Press, Beijing 2012; 2nd edition: Fundamentals of Complex Networks. Wiley, Singapore, 2014.
    [3]
    A. L. Barabási, Network Science, Cambridge Univ. Press, 2016.
    [4]
    P. Erdös and A. Rényi, “On the evolution of random graphs,” Pub. Math. Inst. Hu. Acad. Sci., vol. 5, pp. 17–60, 1960.
    [5]
    D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, pp. 440–442, 1998. doi: 10.1038/30918
    [6]
    D. S. De Solla Price, “Networks of scientific papers,” Science, vol. 149, no. 3683, pp. 510–515, 1965. doi: 10.1126/science.149.3683.510
    [7]
    A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, pp. 509–512, 1999. doi: 10.1126/science.286.5439.509
    [8]
    S. H. Strogatz and I. Stewart, “Coupled oscillators and biological synchronization,” Scintific American, December Issue: 102–109, 1993.
    [9]
    B. Ibarz, J. M. Casado and M. A. F. Sanjuán, “Map-based models in neuronal dynamics,” Physics Reports, vol. 501, pp. 1–74, 2011. doi: 10.1016/j.physrep.2010.12.003
    [10]
    W. Singer, “Neuronal synchrony: A versatile code for the definition of relations?” Neuron, vol. 24, pp. 49–65, 1999. doi: 10.1016/S0896-6273(00)80821-1
    [11]
    P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, pp. 155–168, 2006. doi: 10.1016/j.neuron.2006.09.020
    [12]
    H. D. I. Abarbanel, M. I. Rabinovich, A. Selverston, M. V. Bazhenov, R. Huerta, M. M. Sushchik and L. L. Rubchinskii, “Synchronisation in neural networks,” Phys. Usp., vol. 39, pp. 337–362, 1996. doi: 10.1070/PU1996v039n04ABEH000141
    [13]
    A. Arenas, A. Daz-Guilera, J. Kürths, Y. Moreno and C. S. Zhou, “Synchronization in complex networks,” Physics Reports, vol. 469, no. 3, pp. 93–153, 2008. doi: 10.1016/j.physrep.2008.09.002
    [14]
    X. F. Wang, X. Li and G. Chen, Network Science: An Introduction (in Chinese), Higher Education Press, Beijing, 2012.
    [15]
    L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized coupled systems,” Phys. Rev. Lett., vol. 80, no. 10, pp. 2109–2112, 1998. doi: 10.1103/PhysRevLett.80.2109
    [16]
    X. F. Wang and G. Chen, “Synchronization in small-world dynamical networks,” Int. J. Bifur. Chaos, vol. 12, no. 1, pp. 187–192, 2002. doi: 10.1142/S0218127402004292
    [17]
    X. F. Wang and G. Chen, “Synchronization in scale-free dynamical networks: Robustness and fragility,” IEEE Trans. Circ. Syst.-I, vol. 49, pp. 54–62, 2002.
    [18]
    M. Barahona and L. M. Pecora, “Synchronization in small-world systems,” Phys. Rev. Lett., vol. 89, no. 5, Article No. 054101, 2002. doi: 10.1103/PhysRevLett.89.054101
    [19]
    A. Stefanski, P. Perlikowski and T. Kapitaniak, “synchronizability of coupled oscillators,” Phys. Rev. E, vol. 75, Article No. 016210, 2007. doi: 10.1103/PhysRevE.75.016210
    [20]
    G. Chen and Z. S. Duan, “Network synchronizabil-ity analysis: A graph-theoretic approach,” Chaos, vol. 18, no. 3, Article No. 037102, 2008. doi: 10.1063/1.2965530
    [21]
    Z. S. Duan and G. Chen, “Does the eigenratio λ2/λ N represent the synchronizability of a complex network?” Chinese Phys. B, vol. 21, no. 8, Article No. 080506, 2012. doi: 10.1088/1674-1056/21/8/080506
    [22]
    D. H. Shi, G. Chen, W. W. K. Thong and X. Y. Yan, “Searching for optimal network topology with best possible synchronizability,” IEEE Circ. Syst. Magaz., vol. 13, no. 1, pp. 66–75, 2013. doi: 10.1109/MCAS.2012.2237145
    [23]
    D. H. Shi, L. Y. Lü and G. Chen, “Totally homogeneous networks,” Nat. Sci. Rev., vol. 6, pp. 962–969, 2019. doi: 10.1093/nsr/nwz050
    [24]
    I. Mishkovski, M. Righero, M. Biey and L. Kocarev, “Enhancing robustness and synchronizability of networks homogenizing their degree distribution,” Physica A, vol. 390, pp. 4610–4620, 2011. doi: 10.1016/j.physa.2011.06.065
    [25]
    J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
    [26]
    F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J. G. Young and G. Petri, “Networks beyond pairwise interactions: Structure and dynamics,” Physics Reports, vol. 847, pp. 1–92, 2020. doi: 10.1016/j.physrep.2019.12.005
    [27]
    S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pŕez-Vicente, Y. Moreno, and A. Arenas, “Diffusion dynamics on multiplex networks,” Phys. Rev. Lett., vol. 110, Article No. 028701, 2013. doi: 10.1103/PhysRevLett.110.028701
    [28]
    M. Lucas, G. Cencetti and F. Battiston, “Multiorder Laplacian for synchronization in higher-order networks,” Phys. Rev. Research, vol. 2, Article No. 033410, 2020. doi: 10.1103/PhysRevResearch.2.033410
    [29]
    R. Ghorbanchian, J. G. Restrepo, J. J. Torres and G. Bianconi, “Higher-order simplicial synchronization of coupled topological signals,” Comm. Phys., vol. 4, Article No. 120, 2021. doi: 10.1038/s42005-021-00605-4
    [30]
    Y. Zhang, V. Latora and A. E. Motter, “Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions,” Comm. Phys., vol. 4, Article No. 195, 2021. doi: 10.1038/s42005-021-00695-0
    [31]
    L. V. Gambuzza, F. Di Patti, L. Gallo, S. S. Lepri, M. Romance, R. Criado, M. Frasca, V. Latora and S. Boccaletti, “Stability of synchronization in simplicial complexes,” Nature Comm., vol. 12, Article No. 1255, 2021. doi: 10.1038/s41467-021-21486-9
    [32]
    X. Dai, K. Kovalenko, M. Molodyk, Z. Wang, X. Li, D. Musatov, A. M. Raigorodskii, A. Bittner, G. D. Cooper, G. Bianconi and S. Boccaletti, “D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios,” Chaos,Solit. Fract., vol. 146, Article No. 110888, 2021. doi: 10.1016/j.chaos.2021.110888
    [33]
    H. Liu, X. H. Xu, J.-A. Lu, G. Chen and Z. G. Zeng, “Optimizing pinning control of complex dynamical networks based on spectral properties of grounded Laplacian matrices,” IEEE Trans. Syst. Man Cybern., vol. 51, no. 2, pp. 786–796, 2021. doi: 10.1109/TSMC.2018.2882620
    [34]
    L. N. Xia, Q. Li, R. Z. Song and H. Modares, “Optimal synchronization control of heterogeneous asymmetric input-constrained unknown nonlinear MASs via reinforcement learning,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 3, pp. 520–532, 2022. doi: 10.1109/JAS.2021.1004359
    [35]
    D. H. Shi, Z. F. Chen, X. Sun, Q. H. Chen, C. Ma, Y. Lou and G. Chen, “Computing cliques and cavities in networks,” Comm. Phys., vol. 4, Article No. 249, 2021. doi: 10.1038/s42005-021-00748-4
    [36]
    T. L. Fan, L. Y. Lü, D. H. Shi and T. Zhou, “Characterizing cycle structure in complex networks,” Comm. Phys., vol. 4, Article No. 272, 2021. doi: 10.1038/s42005-021-00781-3

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (595) PDF downloads(227) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return