A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 7
Jul.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
Y. H. Wang, X. D. Li, and S. J. Song, “Input-to-state stabilization of nonlinear impulsive delayed systems: An observer-based control approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1273–1283, Jul. 2022. doi: 10.1109/JAS.2022.105422
Citation: Y. H. Wang, X. D. Li, and S. J. Song, “Input-to-state stabilization of nonlinear impulsive delayed systems: An observer-based control approach,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1273–1283, Jul. 2022. doi: 10.1109/JAS.2022.105422

Input-to-State Stabilization of Nonlinear Impulsive Delayed Systems: An Observer-Based Control Approach

doi: 10.1109/JAS.2022.105422
Funds:  This work was supported by the National Natural Science Foundation of China (62173215), Major Basic Research Program of the Natural Science Foundation of Shandong Province in China (ZR2021ZD04, ZR2020ZD24), and the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)
More Information
  • This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis- turbances. Since the information of plant’s states, time delays, and exogenous disturbances is often hard to be obtained, the key design challenge, which we resolve, is the construction of a state observer-based controller. For this purpose, we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct (or estimate) the plant’s states. And then based on the observations, we establish an observer-based control design for the plant to achieve the input-to-state stability (ISS) and integral-ISS (iISS) properties. With the help of the comparison principle and average impulse interval approach, some sufficient conditions are presented, and moreover, two different linear matrix inequalities (LMIs) based criteria are proposed to design the gain matrices. Finally, two numerical examples and their simulations are given to show the effectiveness of our theoretical results.


  • loading
  • [1]
    V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6. Singapore: World Scientific, 1989.
    W. M. Haddad, V. Chellaboina, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control. Princeton, USA: Princeton University Press, 2014.
    W.-H. Chen and W. X. Zheng, “Input-to-state stability for networked control systems via an improved impulsive system approach,” Automatica, vol. 47, no. 4, pp. 789–796, Apr. 2011. doi: 10.1016/j.automatica.2011.01.050
    Z.-H. Guan, Z.-W. Liu, G. Feng, and M. Jian, “Impulsive consensus algorithms for second-order multi-agent networks with sampled information,” Automatica, vol. 48, no. 7, pp. 1397–1404, Jul. 2012. doi: 10.1016/j.automatica.2012.05.005
    X. Jiang, X. Zeng, J. Sun, and J. Chen, “Distributed hybrid impulsive algorithm with supervisory resetting for nonlinear optimization problems,” Int. J. Robust Nonlinear Control, vol. 31, no. 8, pp. 3230–3247, Feb. 2021. doi: 10.1002/rnc.5451
    K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems. Boston, USA: Birkhauser, 2003.
    S. S. Ge, F. Hong, and T. H. Lee, “Adaptive neural network control of nonlinear systems with unknown time delays,” IEEE Trans. Autom. Control, vol. 48, no. 11, pp. 2004–2010, Nov. 2003. doi: 10.1109/TAC.2003.819287
    D. Li, Y.-J. Liu, S. Tong, C. P. Chen, and D.-J. Li, “Neural networks-based adaptive control for nonlinear state constrained systems with input delay,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1249–1258, Apr. 2019. doi: 10.1109/TCYB.2018.2799683
    Y.-B. Huang, Y. He, J. An, and M. Wu, “Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2905–2912, Jun. 2021. doi: 10.1109/TAC.2020.3013930
    X.-M. Zhang, Q.-L. Han, and X. Ge, “Novel stability criteria for linear time-delay systems using Lyapunov-Krasovskii functionals with a cubic polynomial on time-varying delay,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 77–85, Jan. 2021.
    Z. Wang, J. Sun, and Y. Bai, “Stability analysis of event-triggered networked control systems with time-varying delay and packet loss,” J. Syst. Sci. Complex., vol. 34, no. 1, pp. 265–280, Feb. 2021. doi: 10.1007/s11424-020-9299-1
    H. Lin, H. Zeng, and W. Wang, “New Lyapunov-Krasovskii functional for stability analysis of linear systems with time-varying delay,” J. Syst. Sci. Complex., vol. 34, no. 2, pp. 632–641, Apr. 2021. doi: 10.1007/s11424-020-9179-8
    Y. Zhang, J. Sun, and G. Feng, “Impulsive control of discrete systems with time delay,” IEEE Trans. Autom. Control, vol. 54, no. 4, pp. 830–834, Apr. 2009.
    W.-H. Chen and W. X. Zheng, “Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays,” Automatica, vol. 45, no. 6, pp. 1481–1488, Jun. 2009. doi: 10.1016/j.automatica.2009.02.005
    X. Li and M. Bohner, “An impulsive delay differential inequality and applications,” Comput. Math. Appl., vol. 64, no. 6, pp. 1875–1881, Sep. 2012. doi: 10.1016/j.camwa.2012.03.013
    X. Wu, Y. Tang, and W. Zhang, “Input-to-state stability of impulsive stochastic delayed systems under linear assumptions,” Automatica, vol. 66, pp. 195–204, Apr. 2016. doi: 10.1016/j.automatica.2016.01.002
    S. Peng and F. Deng, “New criteria on pth moment input-to-state stability of impulsive stochastic delayed differential systems,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3573–3579, Jul. 2017. doi: 10.1109/TAC.2017.2660066
    X. Yang, X. Li, Q. Xi, and P. Duan, “Review of stability and stabilization for impulsive delayed systems,” Math. Biosci. Eng., vol. 15, no. 6, pp. 1495–1515, Dec. 2018. doi: 10.3934/mbe.2018069
    X. Li, X. Yang, and T. Huang, “Persistence of delayed cooperative models: Impulsive control method,” Appl. Math. Comput., vol. 342, pp. 130–146, Feb. 2019.
    X. Liu and K. Zhang, “Input-to-state stability of time-delay systems with delay-dependent impulses,” IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1676–1682, Apr. 2020. doi: 10.1109/TAC.2019.2930239
    E. D. Sontag, “Smooth stabilization implies coprime factorization,” IEEE Trans. Autom. Control, vol. 34, no. 4, pp. 435–443, Apr. 1989. doi: 10.1109/9.28018
    A. R. Teel, “Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem,” IEEE Trans. Autom. Control, vol. 43, no. 7, pp. 960–964, Jul. 1998. doi: 10.1109/9.701099
    E. D. Sontag, “Comments on integral variants of ISS,” Syst. Control Lett., vol. 34, no. 1–2, pp. 93–100, May 1998. doi: 10.1016/S0167-6911(98)00003-6
    J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions for input-to-state stability of impulsive systems,” Automatica, vol. 44, no. 11, pp. 2735–2744, Nov. 2008. doi: 10.1016/j.automatica.2008.03.021
    S. Dashkovskiy and A. Mironchenko, “Input-to-state stability of nonlinear impulsive systems,” SIAM J. Control Optim., vol. 51, no. 3, pp. 1962–1987, May 2013. doi: 10.1137/120881993
    S. Dashkovskiy and P. Feketa, “Input-to-state stability of impulsive systems and their networks,” Nonlinear Anal.-Hybrid Syst., vol. 26, pp. 190–200, Nov. 2017. doi: 10.1016/j.nahs.2017.06.004
    D. Liberzon and D. Nesic, “Input-to-state stabilization of linear systems with quantized state measurements,” IEEE Trans. Autom. Control, vol. 52, no. 5, pp. 767–781, May 2007. doi: 10.1109/TAC.2007.895850
    T. Liu and Z.-P. Jiang, “Distributed control of nonlinear uncertain systems: A cyclic-small-gain approach,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 1, pp. 46–53, Jan. 2014. doi: 10.1109/JAS.2014.7004619
    B. Liu, D. J. Hill, and Z. Sun, “Stabilisation to input-to-state stability for continuous-time dynamical systems via event-triggered impulsive control with three levels of events,” IET Contr. Theory Appl., vol. 12, no. 9, pp. 1167–1179, Jun. 2018. doi: 10.1049/iet-cta.2017.0820
    X. Li, H. Zhu, and S. Song, “Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control,” IEEE Trans. Syst. Man,Cybern.: syst., vol. 51, no. 11, pp. 6892–6900, Nov. 2021. doi: 10.1109/TSMC.2020.2964172
    C. Lin, Q.-G. Wang, T. H. Lee, Y. He, and B. Chen, “Observer-based $H_\infty$ fuzzy control design for T-S fuzzy systems with state delays,” Automatica, vol. 44, no. 3, pp. 868–874, Mar. 2008. doi: 10.1016/j.automatica.2007.07.018
    C. Hua, T. Zhang, Y. Li, and X. Guan, “Robust output feedback control for fractional order nonlinear systems with time-varying delays,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 477–482, Oct. 2016. doi: 10.1109/JAS.2016.7510106
    W. Xiao, L. Cao, H. Li, and R. Lu, “Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay,” Sci. China-Inf. Sci., vol. 63, no. 3, pp. 1–17, Feb. 2020.
    H. Yang, B. Jiang, and V. Cocquempot, “Observer-based fault-tolerant control for a class of hybrid impulsive systems,” Int. J. Robust Nonlinear Control, vol. 20, no. 4, pp. 448–459, Mar. 2010. doi: 10.1002/rnc.1442
    K. H. Degue, D. Efimov, and J.-P. Richard, “Stabilization of linear impulsive systems under dwell-time constraints: Interval observer-based framework,” Eur. J. Control, vol. 42, pp. 1–14, Jul. 2018. doi: 10.1016/j.ejcon.2018.01.001
    X. Ni, S. Wen, H. Wang, Z. Guo, S. Zhu, and T. Huang, “Observer-based quasi-synchronization of delayed dynamical networks with parameter mismatch under impulsive effect,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 3046–3055, Jul. 2021. doi: 10.1109/TNNLS.2020.3009271
    B. Li, Z. Wang, L. Ma, and H. Liu, “Observer-based event-triggered control for nonlinear systems with mixed delays and disturbances: The input-to-state stability,” IEEE Trans. Cybern., vol. 49, no. 7, pp. 2806–2819, Jul. 2019. doi: 10.1109/TCYB.2018.2837626
    H. K. Khalil and J. W. Grizzle, Nonlinear Systems, vol. 3. NJ, USA: Prentice Hall Upper Saddle River, 2002.
    A. M. Pertew, H. J. Marquez, and Q. Zhao, “H ${}_\infty $ observer design for Lipschitz nonlinear systems” IEEE Trans. Autom. Control, vol. 51, no. 7, pp. 1211–1216, Jul. 2006. doi: 10.1109/TAC.2006.878784
    M.-S. Chen and C.-C. Chen, “Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2365–2369, Dec. 2007. doi: 10.1109/TAC.2007.910724
    A. Selivanov and E. Fridman, “Observer-based input-to-state stabilization of networked control systems with large uncertain delays,” Automatica, vol. 74, pp. 63–70, Dec. 2016. doi: 10.1016/j.automatica.2016.07.031
    C. Hua, P. X. Liu, and X. Guan, “Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems,” IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3723–3732, Sep. 2009. doi: 10.1109/TIE.2009.2025713
    Z. Wu, “Stability criteria of random nonlinear systems and their applications,” IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 1038–1049, Apr. 2015. doi: 10.1109/TAC.2014.2365684


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (376) PDF downloads(101) Cited by()


    • The problems of input-to-state stabilization for impulsive delayed systems are addressed
    • A novel observer-based output feedback controller is designed for stabilization
    • The designed state observer can be applied to the case involving unmeasurable time delays
    • Two different design schemes for controller are proposed in terms of linear matrix inequalities


    DownLoad:  Full-Size Img  PowerPoint