A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Z. Zuo, C. J. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and future challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 601–614, Apr. 2022. doi: 10.1109/JAS.2022.105410
Citation: Z. Zuo, C. J. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and future challenges,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 601–614, Apr. 2022. doi: 10.1109/JAS.2022.105410

Unmanned Aerial Vehicles: Control Methods and Future Challenges

doi: 10.1109/JAS.2022.105410
Funds:  This work was supported by the National Natural Science Foundation of China (62073019)
More Information
  • With the rapid development of computer technology, automatic control technology and communication technology, research on unmanned aerial vehicles (UAVs) has attracted extensive attention from all over the world during the last decades. Particularly due to the demand of various civil applications, the conceptual design of UAV and autonomous flight control technology have been promoted and developed mutually. This paper is devoted to providing a brief review of the UAV control issues, including motion equations, various classical and advanced control approaches. The basic ideas, applicable conditions, advantages and disadvantages of these control approaches are illustrated and discussed. Some challenging topics and future research directions are raised.

     

  • loading
  • [1]
    I. A. Raptis and K. P. Valavanis, Linear and Nonlinear Control of Small-Scale Unmanned Helicopters. New York: Springer Science, 2011.
    [2]
    A. S. Saeed, A. B. Younes, C. Cai, and G. Cai, “A survey of hybrid unmanned aerial vehicles,” Progress in Aerospace Sciences, vol. 98, pp. 91–105, 2018. doi: 10.1016/j.paerosci.2018.03.007
    [3]
    J. C. Doyle and G. Stein, “Multivariable feedback design: Concepts for a classical/modern synthesis,” IEEE Trans. Automatic Control, vol. 26, no. 1, pp. 4–16, 1981. doi: 10.1109/TAC.1981.1102555
    [4]
    A. N. Andry, E. Y. Shapiro, and J. C. Chung, “Eigenstructure assignment for linear systems,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-19, no. 5, pp. 711–729, 1983. doi: 10.1109/TAES.1983.309373
    [5]
    D. Enns, D. Bugajski, R. Hendrick, and G. Sein, “Dynamic inversion: An evolving methodology for flight control design,” Int. Journal of Control, vol. 59, no. 1, pp. 71–91, 1994. doi: 10.1080/00207179408923070
    [6]
    S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Robustness. New Jersey: Prentice-Hall, 1989.
    [7]
    B. D. O. Anderson, “Failures of adaptive control theory and their resolution,” Communications in Information and Systems, vol. 5, no. 1, pp. 1–20, 2005. doi: 10.4310/CIS.2005.v5.n1.a1
    [8]
    A. Datta and M. Ho, “On modifying model reference adaptive control schemes for performance improvement,” IEEE Trans. Automatic Control, vol. 39, no. 9, pp. 1977–1980, 1994. doi: 10.1109/9.317139
    [9]
    M. Arcak, M. Seron, J. Braslavsky, and V. Kokotović, “Robustification of backstepping against input unmodeled dynamics,” IEEE Trans. Automatic Control, vol. 45, no. 7, pp. 1358–1363, 2000. doi: 10.1109/9.867048
    [10]
    I. Kaminer, P. Khargonekar, and G. Robel, “Design of localizer capture and track modes for a lateral autopilot using H synthesis,” IEEE Control Systems Magazine, vol. 10, no. 4, pp. 13–21, 1990. doi: 10.1109/37.56273
    [11]
    R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice. New Jersey: Princeton University Press, 2012.
    [12]
    B. L. Stevens, L. F. L., and E. N. Johnson, Aircraft Control and Simulation. New Jersey: John Wiley & Sons, 2016.
    [13]
    R. J. Wallsgrove and M. R. Akella, “Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances,” Journal of Guidance,Control,and Dynamics, vol. 28, no. 5, pp. 957–963, 2005. doi: 10.2514/1.9980
    [14]
    Tsiotras, “Stabilization and optimality results for the attitude control problem,” Journal of Guidance,Control,and Dynamics, vol. 19, no. 4, pp. 772–779, 1996. doi: 10.2514/3.21698
    [15]
    R. M. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic Manipulation. Boca Raton: CRC Press, 1994.
    [16]
    J. T.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,” IEEE Trans. Automatic Control, vol. 36, no. 10, pp. 1148–1162, 1991. doi: 10.1109/9.90228
    [17]
    M. D. Shuster, “A survey of attitude representation,” Journal of the Astronautical Sciences, vol. 41, no. 4, pp. 439–517, 1993.
    [18]
    A. R. S. Bramwell, G. Done, and D. Balmford, Bramwell’s Helicopter Dynamics. Oxford: Butterworth Heinemann, 2001.
    [19]
    D. Cvetković, I. Kostić, C. Mitrović, and A. Bengin, “Mathematical models of helicopter flight dynamics,” in Proc. 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA 2002-0529, DOI: 10.2514/6.2002-529, Reno, NV, 2002.
    [20]
    B. Zhu and Z. Zuo, “Approximate analysis for main rotor flapping dynamics of a model-scaled helicopter with bell-hiller stabilizing bar in hovering and vertical flights,” Nonlinear Dynamics, vol. 85, pp. 1705–1717, 2016. doi: 10.1007/s11071-016-2788-z
    [21]
    V. Gavrilets, B. Mettler, and E. Feron, “Nonlinear model for a smallsize acrobatic helicopter,” in Proc. AIAA Guidance, Navigation, and Control Conf. and Exhibit, AIAA-2001-4333, DOI: 10.2514/6.2001-4333, Montrcal, Canada, 2001.
    [22]
    S. A. Snell, D. F. Enns, and W. L. Garrard Jr., “Nonlinear inversion flight control for a supermaneuverable aircraft,” Journal of Guidance,Control,and Dynamics, vol. 15, no. 4, pp. 976–984, 1992. doi: 10.2514/3.20932
    [23]
    K. A. Wise and D. J. Broy, “Agile missile dynamics and control,” Journal of Guidance,Control,and Dynamics, vol. 21, no. 3, pp. 441–449, 1998. doi: 10.2514/2.4256
    [24]
    M. B. McFarland and A. J. Calise, “Adaptive nonlinear control of agile antiair missiles using neural networks,” IEEE Trans. Control Systems Technology, vol. 8, no. 5, pp. 749–756, 2000. doi: 10.1109/87.865848
    [25]
    R. C. Nelson, Flight Stability and Automatic Control. McGraw-hill, New York, 1998.
    [26]
    K. L. Hicks and A. A. Rodriguez, “Decoupling compensation for the apache helicopter,” in Proc. 35th IEEE Conf. on Decision and Control, Kobe, Japan, 1996, pp. 1551–1556.
    [27]
    B. C. Moore, “On the flexibility offered by state feedback in multivariable systems beyond closed loop eigenvalue assignment,” IEEE Trans. Automatic Control, vol. 21, no. 5, pp. 689–692, 1976. doi: 10.1109/TAC.1976.1101355
    [28]
    M. M. Fahmy and J. O’Reilly, “On eigenstructure assignment in linear multivariable system,” IEEE Trans. Automatic Control, vol. 27, no. 3, pp. 690–693, 1982. doi: 10.1109/TAC.1982.1102995
    [29]
    J. E. Piou and K. M. Sobel, “Application of gain scheduled eigenstructure assignment to flight control design,” in Proc. the 1996 IEEE Int. Conf. on Control Applications, Dearborn, MI, 1996, pp. 101–106.
    [30]
    W. J. Rugh, “Analytical framework for gain scheduling,” IEEE Control Systems Magazine, vol. 11, no. 1, pp. 79–84, 1991. doi: 10.1109/37.103361
    [31]
    X. Dong, Z. Xiong, and Q. Liu, “Gain scheduled model following control of flight control system based on neural network,” in Proc. IEEE Int. Conf. on Neural Networks & singnal Processing, Nanjing, China, 2003, pp. 301–305.
    [32]
    G. J. Gray, Y. Li, D. J. Murray Smith, E. Ronco, and K. C. Sharman, “The application of genetic algorithms to gain-scheduling controller analysis and design,” in Proc. IEE Conf. Publication, 1997, pp. 344–348.
    [33]
    J. Varso and H. N. Koivo, “Fuzzy logic in gain scheduling of multivariable control,” in Proc. the 3rd IEEE Conf. on Industrial Electronics and Application, 2008, pp. 1264–1269.
    [34]
    B. Kadmiry, P. Bergsten, and D. Driankov, “Autonomous helicopter control using fuzzy gain scheduling,” in Proc. the 2001 IEEE Int. Conf. on Robotics & Automation, Seoul, Korea, 2001, pp. 2980–2985.
    [35]
    J. S. Shamma and M. Athans, “Gain scheduling: potential hazards and possible remedies,” IEEE Control Systems Magazine, vol. 12, no. 3, pp. 101–107, 1992. doi: 10.1109/37.165527
    [36]
    J. F. Shamma and J. R. Cloutier, “A linear parameter-varying approach to gain scheduled missile autopilot design,” in Proc. the American Control Conf., Chicago, IL, 1992, pp. 1317–1321.
    [37]
    P. Apkarian, P. Gahinet, and G. Becker, “Self-scheduled control of linear parameter-varying systems,” in Proc. the American Control Conf., Balffmore, Maryland, 1994, pp. 856–860.
    [38]
    A. Hiret, G. Duc, and J. P. Friang, “Self-scheduled H loop-shaping control of a missile,” in Proc. the European Control Conf., Karlsruhe, Germany, 1999, pp. 1207–1212.
    [39]
    E. J. Cramer and T. P. Lee, “Test flight of LQR missile guidance,” Tech. Rep. AIAA-92-4532-CP, 1992.
    [40]
    Z. Jiang, J. Han, Y. Wang, and Q. Song, “Enhanced LQR control for unmanned helicopter in hover,” in Proc. 1st Int. Symposium on Systems and Control in Aerospace and Astronautics, Harbin, China, 2006, pp. 19–21.
    [41]
    H. K. Khalil, Nonlinear Systems, 3rd ed. New Jersey: Princeton Hall, 2002.
    [42]
    S. H. Lane and R. F. Stengel, “Flight control design using non-linear inverse dynamics,” Automatica, vol. 24, no. 4, pp. 471–483, 1988. doi: 10.1016/0005-1098(88)90092-1
    [43]
    C. Schumacher and P. Khargonekar, “Stability analysis of a missile control system with a dynamic inversion controller,” Journal of Guidance,Control,and Dynamics, vol. 21, no. 3, pp. 508–515, 1998. doi: 10.2514/2.4266
    [44]
    Z. Zuo, “Trajectory tracking control design with command-filtered compensation for a quadrotor,” IET Control Theory &Applications, vol. 4, no. 11, pp. 2343–2355, 2010.
    [45]
    M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design. New York: John Wiley & Sons, 1995.
    [46]
    J. R. Azinheira and A. Moutinho, “Hover control of an UAV with backstepping design including input saturations,” IEEE Trans. Control Systems Technology, vol. 16, no. 3, pp. 517–526, 2008. doi: 10.1109/TCST.2007.908209
    [47]
    B. Ahmed, H. R. Pota, and M. Garratt, “Flight control of a rotary wing UAV using backstepping,” Int. Journal of Robust and Nonlinear Control Control, vol. 20, no. 6, pp. 639–658, 2010. doi: 10.1002/rnc.1458
    [48]
    J. Farrell, M. Polycarpou, and M. Sharma, “Command filtered backstepping,” IEEE Trans. Automatic Control, vol. 54, no. 6, pp. 1391–1395, 2009. doi: 10.1109/TAC.2009.2015562
    [49]
    J. A. Farrell, M. Polycarpou, and M. Sharma, “Adaptive backstepping with magnitude, rate, and bandwidth constraints: Aircraft longitude control,” in Proc. American Control Conf., Denver, Colorado, 2003, pp. 3898–3904.
    [50]
    R. J. Adams, M. Xin, and S. S. Banda, “Robust flight control design using dynamic inversion and structured singular value synthesis,” IEEE Trans. Control,Systems Technology, vol. 1, no. 2, pp. 80–92, 1993. doi: 10.1109/87.238401
    [51]
    R. Hindman and W. M. Shell, “Missile autopilot design using adaptive nonlinear dynamic inversion,” in Proc. 2005 American Control Conf., Portland, OR, USA, 2005, pp. 3918–3919.
    [52]
    T. Madani and A. Benallegue, “Backstepping sliding mode control applied to a miniature quadrotor flying robot,” in Proc. 32nd Annual Conf. on IEEE Industrial Electronics (IECON), Paris, France, 2006, pp. 700–705.
    [53]
    M. Huang, B. Xian, C. Diao, K. Yang, and Y. Feng, “Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping,” in Proc. 2010 American Control Conf., Baltimore, MD, USA, 2010, pp. 2076–2081.
    [54]
    W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and M. Sharma, “Command filtered adaptive backstepping,” IEEE Trans. Control Systems Technology, vol. 20, no. 3, pp. 566–580, 2012. doi: 10.1109/TCST.2011.2121907
    [55]
    Z. Zuo, “Adaptive trajectory tracking control design with command filtered compensation for a quadrotor,” Journal of Vibration and Control, vol. 19, no. 1, pp. 94–108, 2012.
    [56]
    T. Yucelen and W. M. Haddad, “Low-frequency learning and fast adaptation in model reference adaptive control,” IEEE Trans. Automatic Control, vol. 58, no. 4, pp. 1080–1085, 2013. doi: 10.1109/TAC.2012.2218667
    [57]
    N. Hovakimyan and C. Cao, $ {\cal{L}}_1$ Adaptive Control Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010.
    [58]
    I. Kaminer, A. Pascoal, E. Xargay, N. Hovakimyan, C. Cao, and V. Dobrokhodov, “Path following for unmanned aerial vehicles using $ {\cal{L}}_1$ adaptive augmentation of commercial autopilots” Journal of Guidance,Control,and Dynamics, vol. 33, no. 2, pp. 550–564, 2010. doi: 10.2514/1.42056
    [59]
    N. Hovakimyan, C. Cao, E. Kharisov, E. Xargay, and I. M. Gregory, “ $ {\cal{L}}_1$ adaptive control for safety-critical systems guaranteed robustness with fast adaptation” IEEE Control Systems Magazine, vol. 31, no. 5, pp. 54–104, 2011. doi: 10.1109/MCS.2011.941961
    [60]
    Z. Zuo and S. Mallikarjunan, “ $ {\cal{L}}_1$ adaptive backstepping for robust trajectory tracking of UAVs” IEEE Trans. Industrial Electronics, vol. 64, no. 4, pp. 2944–2954, 2017. doi: 10.1109/TIE.2016.2632682
    [61]
    L. Marconi and R. Naldi, “Robust full degree-of-freedom tracking control of a helicopter,” Automatica, vol. 43, no. 11, pp. 1909–1920, 2007. doi: 10.1016/j.automatica.2007.03.028
    [62]
    R. Naldi, L. Gentili, L. Marconi, and A. Sala, “Design and experimental validation of a nonlinear control law for a ducted-fan miniature aerial vehicle,” Control Engineering Practice, vol. 18, no. 7, pp. 747–760, 2010. doi: 10.1016/j.conengprac.2010.02.007
    [63]
    E. J. J. Smeur, Q. Chu, and G. C. H. E. de Croon, “Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles,” Journal of Guidance,Control,and Dynamics, vol. 39, no. 3, pp. 450–461, 2016. doi: 10.2514/1.G001490
    [64]
    E. J. J. Smeur, G. C. H. E. de Croon, and Q. Chu, “Cascaded incremental nonlinear dynamic inversion for MAV disturbance rejection,” Control Engineering Practice, vol. 73, pp. 79–90, 2018. doi: 10.1016/j.conengprac.2018.01.003
    [65]
    L. Marconi, R. Naldi, and A. Isidori, “High-gain output feedback for a miniature UAV,” Int. Journal of Robust and Nonlinear Control, vol. 24, no. 6, pp. 1104–1126, 2014. doi: 10.1002/rnc.2959
    [66]
    H. Liu, D. Li, J. Xi, and Y. Zhong, “Robust attitude controller design for miniature quadrotors,” Int. Journal of Robust and Nonlinear Control, vol. 26, no. 4, pp. 681–696, 2016. doi: 10.1002/rnc.3332
    [67]
    S. Li, J. Yang, W. Chen, and X. Chen, Disturbance Observer-Based Control: Methods and Applications. Taylor & Francis, 2014.
    [68]
    J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009. doi: 10.1109/TIE.2008.2011621
    [69]
    Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation. Springer New York, 2014.
    [70]
    A. Levant, “Higher-order sliding modes, differentiation and outputfeedback control,” Int. Journal of Control, vol. 76, no. 9–10, pp. 924–941, 2003. doi: 10.1080/0020717031000099029
    [71]
    W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observerbased control and related methods–an overview,” IEEE Trans. Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016. doi: 10.1109/TIE.2015.2478397
    [72]
    C. Liu, W.-H. Chen, and J. Andrews, “Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers,” Control Engineering Practice, vol. 20, no. 3, pp. 258–268, 2012. doi: 10.1016/j.conengprac.2011.10.015
    [73]
    H. Lu, C. Liu, L. Guo, and W. H. Chen, “Flight control design for small-scale helicopter using disturbance observer-based backstepping,” Journal of Guidance,Control,and Dynamics, vol. 38, no. 11, pp. 2235–2240, 2015. doi: 10.2514/1.G001196
    [74]
    L. Besnard, Y. B. Shtessel, and B. Landrum, “Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer,” Journal of the Franklin Institute, vol. 349, no. 2, pp. 658–684, 2012. doi: 10.1016/j.jfranklin.2011.06.031
    [75]
    B. Tian, L. Liu, H. Lu, Z. Zuo, Q. Zong, and Y. Zhang, “Multivariable finite time attitude control for quadrotor UAV: Theory and experimentation,” IEEE Trans. Industrial Electronics, vol. 65, no. 3, pp. 2567–2577, 2018. doi: 10.1109/TIE.2017.2739700
    [76]
    L. Wang and J. Su, “Robust disturbance rejection control for attitude tracking of an aircraft,” IEEE Trans. Control Systems Technology, vol. 23, no. 6, pp. 2361–2368, 2015. doi: 10.1109/TCST.2015.2398811
    [77]
    X. Lyu, J. Zhou, H. Gu, Z. Li, S. Shen, and F. Zhang, “Disturbance observer based hovering control of quadrotor tail-sitter VTOL UAVs using H synthesis,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2910–2917, 2018. doi: 10.1109/LRA.2018.2847405
    [78]
    K. Ohishi, M. Nakao, K. Ohnishi, and K. Miyachi, “Microprocessor-controlled DC motor for load-insensitive position servo system,” IEEE Trans. Industrial Electronics, vol. IE-34, no. 1, pp. 44–49, 1987. doi: 10.1109/TIE.1987.350923
    [79]
    S. J. Lee, D. Lee, J. Kim, D. Kim, I. Jang, and H. J. Kim, “Fully actuated autonomous flight of thruster-tilting multirotor,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 2, pp. 765–776, 2021. doi: 10.1109/TMECH.2020.2999586
    [80]
    W.-H. Chen, D. Ballance, Gawthrop, and J. O’Reilly, “A nonlinear disturbance observer for robotic manipulators,” IEEE Trans. Industrial Electronics, vol. 47, no. 4, pp. 932–938, 2000. doi: 10.1109/41.857974
    [81]
    X. He, G. Kou, M. Calaf, and K. K. Leang, “In-ground-effect modeling and nonlinear-disturbance observer for multirotor unmanned aerial vehicle control,” Journal of Dynamic Systems,Measurement,and Control, vol. 141, no. 7, Article No. 071013, 2019. doi: 10.1115/1.4043221
    [82]
    K. Guo, J. Jia, X. Yu, L. Guo, and L. Xie, “Multiple observers based anti-disturbance control for a quadrotor UAV against payload and wind disturbances,” Control Engineering Practice, vol. 102, Article No. 104560, 2020. doi: 10.1016/j.conengprac.2020.104560
    [83]
    M. Chen, S. Xiong, and Q. Wu, “Tracking flight control of quadrotor based on disturbance observer,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 51, no. 3, pp. 1414–1423, 2021. doi: 10.1109/TSMC.2019.2896891
    [84]
    Y. Yan, J. Yang, C. Liu, M. Coombes, S. Li, and W.-H. Chen, “On the actuator dynamics of dynamic control allocation for a small fixed-wing UAV with direct lift control,” IEEE Trans. Control Systems Technology, vol. 28, no. 3, pp. 984–991, 2020. doi: 10.1109/TCST.2019.2945909
    [85]
    R. Sanz, P. Garcia, and P. Albertos, “Active disturbance rejection by state feedback: Experimental validation in a 3-DOF quadrotor platform,” in Proc. the 54th Annual Conf. of the Society of Instrument and Control Engineers of Japan (SICE), 2015, pp. 794–799.
    [86]
    W. Dong, G.-Y. Gu, X. Zhu, and H. Ding, “A high-performance flight control approach for quadrotors using a modified active disturbance rejection technique,” Robotics and Autonomous Systems, vol. 83, pp. 177–187, 2016. doi: 10.1016/j.robot.2016.05.005
    [87]
    H. Yang, L. Cheng, Y. Xia, and Y. Yuan, “Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind,” IEEE Trans. Control Systems Technology, vol. 26, no. 4, pp. 1400–1405, 2018. doi: 10.1109/TCST.2017.2710951
    [88]
    C. E. Hall and Y. B. Shtessel, “Sliding mode disturbance observerbased control for a reusable launch vehicle,” Journal of Guidance,Control,and Dynamics, vol. 29, no. 6, pp. 1315–1328, 2006. doi: 10.2514/1.20151
    [89]
    A. Benallegue, A. Mokhtari, and L. Fridman, “High-order sliding-mode observer for a quadrotor UAV,” Int. Journal of Robust and Nonlinear Control, vol. 18, no. 4-5, pp. 427–440, 2008. doi: 10.1002/rnc.1225
    [90]
    I. Kaminer, A. Pascoal, E. Hallberg, and C. Silvestre, “Trajectory tracking controllers for autonomous vehicles: an integrated approach to guidance and control,” Journal of Guidance,Control,and Dynamics, vol. 21, no. 1, pp. 29–38, 1998. doi: 10.2514/2.4229
    [91]
    C. Nielsen, C. Fulford, and C. Maggiore, “Path following using transverse feedback linearization: Application to a maglev positioning system,” Automatica, vol. 46, no. 3, pp. 585–590, 2010. doi: 10.1016/j.automatica.2010.01.009
    [92]
    D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector field path following for miniature air vehicles,” IEEE Trans. Robotics, vol. 23, no. 3, pp. 519–529, 2007. doi: 10.1109/TRO.2007.898976
    [93]
    J. Reiner, G. J. Balas, and W. L. Garrard, “Robust dynamic inversion for control of highly maneuverable aircraft,” Journal of Guidance,Control,and Dynamics, vol. 18, no. 1, pp. 18–24, 1995. doi: 10.2514/3.56651
    [94]
    P. Sun, B. Zhu, Z. Zuo, and M. Basin, “Vision-based finite-time uncooperative target tracking for UAV subject to actuator saturation,” Automatica, vol. 130, Article No. Article 109708, 2021. doi: 10.1016/j.automatica.2021.109708
    [95]
    A. Aguiar and J. Hespanha, “Trajectory-tracking and pathfollowing of underactuated autonomous vehicles with parametric modeling uncertainty,” IEEE Trans. Automatic Control, vol. 52, no. 8, pp. 1362–1378, 2007. doi: 10.1109/TAC.2007.902731
    [96]
    E. N. Johnson and S. K. Kannan, “Adaptive trajectory control for autonomous helicopters,” Journal of Guidance,Control,and Dynamics, vol. 28, no. 3, pp. 524–538, 2005. doi: 10.2514/1.6271
    [97]
    A. Aguiar, J. Hespanha, and V. Kokotović, “Path-following for nonminimum phase systems removes performance limitations,” IEEE Trans. Automatic Control, vol. 50, no. 2, pp. 234–239, 2005. doi: 10.1109/TAC.2004.841924
    [98]
    Z. Zuo, J. Song, and Q.-L. Han, “Coordinated planar path-following control for multiple nonholonomic wheeled mobile robots,” IEEE Trans. Cybernetics, 2021. DOI: 10.1109/TCYB.2021.3057335,2021
    [99]
    C. Liu, O. McAree, and W.-H. Chen, “Path-following control for small fixed-wing unmanned aerial vehicles under wind disturbances,” Int. Journal of Robust &Nonlinear Control, vol. 23, no. 15, pp. 1682–1698, 2013.
    [100]
    A. Galffy, M. Boeck, and A. Kugi, “Nonlinear 3D path following control of a fixed-wing aircraft based on acceleration control,” Control Engineering Practice, vol. 86, pp. 56–69, 2019. doi: 10.1016/j.conengprac.2019.03.006
    [101]
    B. Zhu and W. Huo, “3-D path-following control for a model-scaled autonomous helicopter,” IEEE Trans. Control Systems Technology, vol. 22, no. 5, pp. 1927–1934, 2014. doi: 10.1109/TCST.2013.2296519
    [102]
    Z. Zuo, L. Cheng, X. Wang, and S. K., “Three-dimensional pathfollowing backstepping control for an underactuated stratospheric airship,” IEEE Trans. Aerospace and Electronic Systems, vol. 55, no. 3, pp. 1483–1497, 2018.
    [103]
    Z. Zuo, J. Song, Z. Zheng, and Q.-L. Han, “A survey on modelling, control and challenges of stratospheric airships,” Control Engineering Practice, vol. 119, Article No. 104979, 2022. doi: 10.1016/j.conengprac.2021.104979
    [104]
    V. Dobrokhodov, I. Kaminer, K. Jones, and R. Ghabcheloo, “Visionbased tracking and motion estimation for moving targets using small UAVs,” in Proc. 2006 American Control Conf., 2006, pp. 1428–1433.
    [105]
    E. Frew, D. Lawrence, and S. Morris, “Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields,” Journal of Guidance Control &Dynamics, vol. 31, no. 2, pp. 290–306, 2008.
    [106]
    H. Chen, K. Chang, and C. S. Agate, “UAV path planning with Tangentplus-Lyapunov vector field guidance and obstacle avoidance,” IEEE Trans. Aerospace and Electronic Systems, vol. 49, no. 2, pp. 840–856, 2013. doi: 10.1109/TAES.2013.6494384
    [107]
    A. Pothen and A. Ratnoo, “Curvature-constrained Lyapunov vector field for standoff target tracking,” Journal of Guidance Control Dynamics, vol. 40, no. 10, pp. 2725–2735, 2017.
    [108]
    Y. Su, Y u, M. J. Gerber, L. Ruan, and T.-C. Tsao, “Nullspace-based control allocation of overactuated UAV platforms,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8094–8101, 2021. doi: 10.1109/LRA.2021.3103637
    [109]
    D. Rohr, M. Studiger, T. Stastny, N. R. J. Lawrance, and R. Siegwart, “Nonlinear model predictive velocity control of a VTOL tiltwing UAV,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5776–5783, 2021. doi: 10.1109/LRA.2021.3084888
    [110]
    W. He, X. Mu, L. Zhang, and Y. Zou, “Modeling and trajectory tracking control for flapping-wing micro aerial vehicles,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 1, pp. 148–156, 2021. doi: 10.1109/JAS.2020.1003417
    [111]
    I. Palunko, Cr uz, and R. Fierro, “Agile load transportation,” IEEE Robotics &Automation Magazine, vol. 19, no. 3, pp. 69–79, 2012.
    [112]
    E. Pounds, D. R. Bersak, and A. M. Dollar, “Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control,” Autonomous Robots, vol. 33, no. 1-2, pp. 129–142, 2012. doi: 10.1007/s10514-012-9280-5
    [113]
    M. O’Connell, G. Shi, X. Shi, and S.-J. Chung, “Meta-learning-based robust adaptive flight control under uncertain wind conditions,” arXiv preprint arXiv: 2103.01932, 2021.
    [114]
    M. Zheng, X. Lyu, X. Liang, and F. Zhang, “A generalized design method for learning-based disturbance observer,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 1, pp. 45–54, 2021.
    [115]
    S. Madruga, A. H. B. M. Tavares, S. O. D. Luiz, T. do Nascimento, and A. M. N. Lima, “Aerodynamic effects compensation on multirotor UAVs based on a neural network control allocation approach,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 2, pp. 295–312, 2022. doi: 10.1109/JAS.2021.1004266
    [116]
    H. Arbabi, “Koopman spectral analysis and study of mixing in incompressible flows,” PhD Thesis, University of California-Santa Barbara, 2017.
    [117]
    M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018. doi: 10.1016/j.automatica.2018.03.046
    [118]
    Z. Zuo and C. Wang, “Adaptive trajectory tracking control of output constrained multi-rotors systems,” IET Control Theory &Applications, vol. 8, no. 13, pp. 1163–1174, 2014.
    [119]
    Y. Liu, Z. Meng, Y. Zou, and M. Cao, “Visual object tracking and servoing control of a nano-scale quadrotor: System, algorithms, and experiments,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 344–360, 2021. doi: 10.1109/JAS.2020.1003530
    [120]
    W. Youn, M. B. Rhudy, A. Cho, and H. Myung, “Fuzzy adaptive attitude estimation for a fixed-wing UAV with a virtual SSA sensor during a GPS outage,” IEE Sensors Journal, vol. 20, no. 3, pp. 1456–1472, 2020. doi: 10.1109/JSEN.2019.2947489
    [121]
    H. Choi and Y. Kim, “Reactive collision avoidance of unmanned aerial vehicles using a single vision sensor,” Journal of Guidance,Control,and Dynamics, vol. 36, no. 4, pp. 1234–1240, 2013. doi: 10.2514/1.57131
    [122]
    B. Wang, J. Xie, and J. Chen, “Data-driven multi-uav navigation in large-scale dynamic environments under wind disturbances,” in AIAA SciTech Forum, Virtual Event, AIAA 2021-1284, DOI: 10.2514/6.2021-1284, 2021, pp. 1–13.
    [123]
    S. Givigi and T. Jardine, “Machine learning for data-driven control of robots,” IEEE Potentials, vol. 37, no. 4, pp. 35–39, 2018. doi: 10.1109/MPOT.2018.2824398
    [124]
    V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015. doi: 10.1038/nature14236

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (3776) PDF downloads(503) Cited by()

    Highlights

    • This paper provides a brief review of the research on UAVs in a control-oriented fashion. It may serve as a catalog of control design methods for researchers and practitioners in the community.
    • Some challenging topics and future research directions in the control field of UAVs are raised.
    • This paper focuses on surveying the modeling and control methods for UAVs, which is quite different from some other surveys on special issue like the path-following problem of UAVs or special kinds of aerial vehicle like the quadrotor.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return