A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 4
Apr.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
M. Ahmed, A. Khan, M. Ahmed, M. Tahir, G. Jeon, G. Fortino, and F. Piccialli, “Energy theft detection in smart grids: Taxonomy, comparative analysis, challenges, and future research directions,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 578–600, Apr. 2022. doi: 10.1109/JAS.2022.105404
Citation: M. Ahmed, A. Khan, M. Ahmed, M. Tahir, G. Jeon, G. Fortino, and F. Piccialli, “Energy theft detection in smart grids: Taxonomy, comparative analysis, challenges, and future research directions,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 578–600, Apr. 2022. doi: 10.1109/JAS.2022.105404

Energy Theft Detection in Smart Grids: Taxonomy, Comparative Analysis, Challenges, and Future Research Directions

doi: 10.1109/JAS.2022.105404
Funds:  This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement (801522), Science Foundation Ireland and co-funded by the European Regional Development Fund through the ADAPT Centre for Digital Content Technology (13/RC/2106_P2)
More Information
  • Electricity theft is one of the major issues in developing countries which is affecting their economy badly. Especially with the introduction of emerging technologies, this issue became more complicated. Though many new energy theft detection (ETD) techniques have been proposed by utilising different data mining (DM) techniques, state & network (S&N) based techniques, and game theory (GT) techniques. Here, a detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations. Three levels of taxonomy are presented to classify state-of-the-art ETD techniques. Different types and ways of energy theft and their consequences are studied and summarised and different parameters to benchmark the performance of proposed techniques are extracted from literature. The challenges of different ETD techniques and their mitigation are suggested for future work. It is observed that the literature on ETD lacks knowledge management techniques that can be more effective, not only for ETD but also for theft tracking. This can help in the prevention of energy theft, in the future, as well as for ETD.

     

  • loading
  • [1]
    M. A. Ferrag, L. A. Maglaras, H. Janicke, J. M. Jiang, and L. Shu, “A systematic review of data protection and privacy preservation schemes for smart grid communications,” Sustain. Cities Soc., vol. 38, pp. 806–835, Apr. 2018. doi: 10.1016/j.scs.2017.12.041
    [2]
    M. Babar, M. U. Tariq, and M. A. Jan, “Secure and resilient demand side management engine using machine learning for IoT-enabled smart grid,” Sustain. Cities Soc., vol. 62, p. 102370, Nov. 2020.
    [3]
    I. Sarwar, “Basic types of energy meters,” Mar. 28, 2017. [Online]. Available: http://engineerexperiences.com/basic-types-energy-meters.html
    [4]
    C. Greer, D. A. Wollman, D. E. Prochaska, P. A. Boynton, J. A. Mazer, C. T. Nguyen, G. J. FitzPatrick, T. L. Nelson, G. H. Koepke, A. R. Hefner Jr., V. Y. Pillitteri, T. L. Brewer, N. T. Golmie, D. H. Su, A. C. Eustis, D. G. Holmberg, and S. T. Bushby, “NIST framework and roadmap for smart grid interoperability standards, release 3.0,” National Institute of Standards and Technology, Gaithersburg, MD, 2014.
    [5]
    N. Langhammer and R. Kays, “Performance evaluation of wireless home automation networks in indoor scenarios,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 2252–2261, Dec. 2012. doi: 10.1109/TSG.2012.2208770
    [6]
    R. Czechowski and A. M. Kosek, “The most frequent energy theft techniques and hazards in present power energy consumption,” in Proc. Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids, Vienna, Austria, 2016, pp. 1–7.
    [7]
    R. Zaman and T. Brudermann, “Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh,” Appl. Energy, vol. 223, pp. 443–456, Aug. 2018. doi: 10.1016/j.apenergy.2018.04.081
    [8]
    S. Foster, “Non-technical losses: A $96 billion global opportunity for electrical utilities,” 2018. [Online]. Available: https://www.pennenergy.com/articles/pennenergy/2017/11/non-technicallosses
    [9]
    V. Gaur and E. Gupta, “The determinants of electricity theft: An empirical analysis of Indian states,” Energy Policy, vol. 93, pp. 127–136, Jun. 2016. doi: 10.1016/j.enpol.2016.02.048
    [10]
    V. Garg, L. Sanchez, and R. Bridle, “An assessment of the financial sustainability of the electricity sector in Rajasthan,” International Institute for Sustainable Development, 2016.
    [11]
    M. J. P. S. Arora, “Power transmission and distribution losses in India–A study report,” J. Curr. Sci., vol. 20, no. 1, 2019.
    [12]
    A. J. Taylor, G. McGwin Jr., R. M. Brissie, L. W. Rue III, and G. G. Davis, “Death during theft from electric utilities,” Am. J. Forensic Med. Pathol., vol. 24, no. 2, pp. 173–176, Jun. 2003.
    [13]
    R. Jiang, H. Tagaris, A. Lachsz, and M. Jeffrey, “Wavelet based feature extraction and multiple classifiers for electricity fraud detection,” in Proc. IEEE/PES Transmission and Distribution Conf. Exhibition, Yokohama, Japan, 2002, pp. 2251–2256.
    [14]
    R. Jiang, R. X. Lu, Y. Wang, J. Luo, C. X. Shen, and X. S. Shen, “Energy-theft detection issues for advanced metering infrastructure in smart grid,” Tsinghua Science and Technology, vol. 19, no. 2, pp. 105–120, Apr. 2014. doi: 10.1109/TST.2014.6787363
    [15]
    P. Jumale, A. Khaire, H. Jadhawar, S. Awathare, and M. Mali, “Survey: Electricity theft detection technique,” Int. J. Comput. Eng. Inform. Technol., vol. 8, no. 2, pp. 30–35, Feb. 2016.
    [16]
    J. L. Viegas, P. R. Esteves, R. Melício, V. M. F. Mendes, and S. M. Vieira, “Solutions for detection of non-technical losses in the electricity grid: A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 1256–1268, Dec. 2017. doi: 10.1016/j.rser.2017.05.193
    [17]
    G. M. Messinis and N. D. Hatziargyriou, “Review of non-technical loss detection methods,” Electr. Power Syst. Res., vol. 158, pp. 250–266, May 2018. doi: 10.1016/j.jpgr.2018.01.005
    [18]
    A. Alsharif, M. Nabil, S. Tonyali, H. Mohammed, M. Mahmoud, and K. Akkaya, “EPIC: Efficient privacy-preserving scheme with EtoE data integrity and authenticity for AMI networks,” IEEE Int. Things J., vol. 6, no. 2, pp. 3309–3321, Apr. 2019. doi: 10.1109/JIOT.2018.2882566
    [19]
    A. Alsharif, M. Nabil, M. M. E. A. Mahmoud, and M. Abdallah, “EPDA: Efficient and privacy-preserving data collection and access control scheme for multi-recipient AMI networks,” IEEE Access, vol. 7, pp. 27829–27845, Feb. 2019. doi: 10.1109/ACCESS.2019.2900934
    [20]
    P. Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection in AMI using customers’ consumption patterns,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 216–226, Jan. 2016. doi: 10.1109/TSG.2015.2425222
    [21]
    S. McLaughlin, D. Podkuiko, and P. McDaniel, “Energy theft in the advanced metering infrastructure,” in Critical Information Infrastructures Security, E. Rome and R. Bloomfield, Eds. Berlin, Heidelberg: Springer, 2010, pp. 176–187.
    [22]
    G. W. Morand, Method and apparatus for indicating meter tampering. 2001, May 15. US Patent 6232886.
    [23]
    A. M. Severson, Meter tampering indicator. 1984, May 22. US Patent 4450504.
    [24]
    G. Figueroa, Y. S. Chen, N. Avila, and C. C. Chu, “Improved practices in machine learning algorithms for NTL detection with imbalanced data,” in Proc. IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 2017, pp. 1–5.
    [25]
    S. Sahoo, D. Nikovski, T. Muso, and K. Tsuru, “Electricity theft detection using smart meter data,” in Proc. IEEE Power & Energy Society Innovative Smart Grid Technologies Conf., Washington, DC, USA, 2015, pp. 1–5.
    [26]
    J. Nagi, K. S. Yap, F. Nagi, S. K. Tiong, S. P. Koh, and S. K. Ahmed, “NTL detection of electricity theft and abnormalities for large power consumers in TNB Malaysia,” in Proc. IEEE Student Conf. Research and Development, Kuala Lumpur, Malaysia, 2010, pp. 202–206.
    [27]
    S. S. Depuru, “Modeling, detection, and prevention of electricity theft for enhanced performance and security of power grid,” Ph.D. dissertation, University of Toledo, Toledo, Ohio, 2012.
    [28]
    R. Grewal, T. Sharma, R. Mourya, A. Kumar, and K. Kaur, “Cost effective overload and theft detection for power distribution system,” in Proc. 3rd IEEE Int. Conf. Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 2018, pp. 450–455.
    [29]
    D. Wang, X. H. Guan, T. Liu, Y. Gu, Y. Sun, and Y. Liu, “A survey on bad data injection attack in smart grid,” in Proc. IEEE PES Asia-Pacific Power and Energy Engineering Conf., Hong Kong, China, 2013, pp. 1–6.
    [30]
    V. A. Narayana, A. Govardhan, and P. Premchand, “To create a confusion matrix in respect of threshold being fixed for effective detection of near duplicate web documents in web crawling,” in Proc. 6th Int. Conf. Computer Sciences and Convergence Information Technology, Seogwipo, Korea (South), 2011, pp. 763–768.
    [31]
    M. Buckland and F. Gey, “The relationship between recall and precision,” J. Am. Soc. Inform. Sci., vol. 45, no. 1, pp. 12–19, Jan. 1994. doi: 10.1002/(SICI)1097-4571(199401)45:1<12::AID-ASI2>3.0.CO;2-L
    [32]
    G. Hripcsak and A. S. Rothschild, “Agreement, the F-measure, and reliability in information retrieval,” J. Am. Med. Inform. Assoc., vol. 12, no. 3, pp. 296–298, May–Jun. 2005. doi: 10.1197/jamia.M1733
    [33]
    Y. Sasaki and R. Fellow, “The truth of the F-measure,” 2007.
    [34]
    J. Myerson, L. Green, and M. Warusawitharana, “Area under the curve as a measure of discounting,” J. Exp. Anal. Behav., vol. 76, no. 2, pp. 235–243, Sept. 2001. doi: 10.1901/jeab.2001.76-235
    [35]
    P. P. Phillips and J. J. Phillips, Return on Investment (ROI) Basics. Alexandria, Virginia: American Society for Training and Development, 2006.
    [36]
    J. Nagi, A. Mohammad, K. S. Yap, S. K. Tiong, and S. K. Ahmed, “Non-technical loss analysis for detection of electricity theft using support vector machines,” in Proc. IEEE 2nd Int. Power and Energy Conf., Johor Bahru, Malaysia, 2008, pp. 907–912.
    [37]
    J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, and A. Mohammad, “Detection of abnormalities and electricity theft using genetic support vector machines,” in Proc. TENCON IEEE Region 10 Conf., Hyderabad, India, 2008, pp. 1–6.
    [38]
    J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, and M. Mohamad, “Nontechnical loss detection for metered customers in power utility using support vector machines,” IEEE Trans. Power Deliv., vol. 25, no. 2, pp. 1162–1171, Apr. 2010. doi: 10.1109/TPWRD.2009.2030890
    [39]
    J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, and F. Nagi, “Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference system,” IEEE Trans. Power Deliv., vol. 26, no. 2, pp. 1284–1285, Apr. 2011. doi: 10.1109/TPWRD.2010.2055670
    [40]
    S. S. S. R. Depuru, L. F. Wang, and V. Devabhaktuni, “Support vector machine based data classification for detection of electricity theft,” in Proc. IEEE/PES Power Systems Conf. Exposition, Phoenix, AZ, USA, 2011, pp. 1–8.
    [41]
    R. L. Wu, L. M. Wang, and T. Y. Hu, “Adaboost-SVM for electrical theft detection and GRNN for stealing time periods identification,” in Proc. 44th Annu. Conf. IEEE Industrial Electronics Society, Washington, DC, USA, 2018, pp. 3073–3078.
    [42]
    A. H. Nizar, Z. Y. Dong, and Y. Wang, “Power utility nontechnical loss analysis with extreme learning machine method,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 946–955, 2008. doi: 10.1109/TPWRS.2008.926431
    [43]
    A. H. Nizar and Z. Y. Dong, “Identification and detection of electricity customer behaviour irregularities,” in Proc. IEEE/PES Power Systems Conf. Exposition, Seattle, WA, USA, 2009, pp. 1–10.
    [44]
    D. B. Xue, X. R. Jing, and H. Q. Liu, “Detection of false data injection attacks in smart grid utilizing ELM-based OCON framework,” IEEE Access, vol. 7, pp. 31762–31773, Mar. 2019. doi: 10.1109/ACCESS.2019.2902910
    [45]
    C. Muniz, K. Figueiredo, M. Vellasco, G. Chavez, and M. Pacheco, “Irregularity detection on low tension electric installations by neural network ensembles,” in Proc. Int. Joint Conf. Neural Networks, Atlanta, GA, USA, 2009, pp. 2176–2182.
    [46]
    S. S. S. R. Depuru, L. F. Wang, V. Devabhaktuni, and P. Nelapati, “A hybrid neural network model and encoding technique for enhanced classification of energy consumption data,” in IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011, pp. 1–8.
    [47]
    R. R. Bhat, R. D. Trevizan, R. Sengupta, X. L. Li, and A. Bretas, “Identifying nontechnical power loss via spatial and temporal deep learning,” in Proc. 15th IEEE Int. Conf. Machine Learning and Applications, Anaheim, CA, USA, 2016, pp. 272–279.
    [48]
    H. Huang, S. Liu, and K. Davis, “Energy theft detection via artificial neural networks,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. Europe, Sarajevo, Bosnia and Herzegovina, 2018, pp. 1–6.
    [49]
    D. H. Yao, M. Wen, X. H. Liang, Z. P. Fu, K. Zhang, and B. J. Yang, “Energy theft detection with energy privacy preservation in the smart grid,” IEEE Int. Things J., vol. 6, no. 5, pp. 7659–7669, Oct. 2019. doi: 10.1109/JIOT.2019.2903312
    [50]
    M. Nabil, M. Ismail, M. M. E. A. Mahmoud, W. Alasmary, and E. Serpedin, “PPETD: Privacy-preserving electricity theft detection scheme with load monitoring and billing for AMI networks,” IEEE Access, vol. 7, pp. 96334–96348, Jun. 2019. doi: 10.1109/ACCESS.2019.2925322
    [51]
    M. Ismail, M. F. Shaaban, M. Naidu, and E. Serpedin, “Deep learning detection of electricity theft cyber-attacks in renewable distributed generation,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3428–3437, Feb. 2020. doi: 10.1109/TSG.2020.2973681
    [52]
    M. A. de Souza, J. L. Pereira, G. de O. Alves, B. C. de Oliveira, I. D. Melo, and P. A. N. Garcia, “Detection and identification of energy theft in advanced metering infrastructures,” Electr. Power Syst. Res., vol. 182, p. 106258, May 2020.
    [53]
    C. G. Wang, S. Tindemans, K. K. Pan, and P. Palensky, “Detection of false data injection attacks using the autoencoder approach,” in Proc. Int. Conf. Probabilistic Methods Applied to Power Systems, Liege, Belgium, 2020, pp. 1–6.
    [54]
    Y. Zhang, J. H. Wang, and B. Chen, “Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 623–634, Jan. 2021. doi: 10.1109/TSG.2020.3010510
    [55]
    C. C. O. Ramos, A. N. de Sousa, J. P. Papa, and A. X. Falcão, “A new approach for nontechnical losses detection based on optimum-path forest,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 181–189, Feb. 2010.
    [56]
    C. C. O. Ramos, A. N. Souza, G. Chiachia, A. X. Falcão, and J. P. Papa, “A novel algorithm for feature selection using harmony search and its application for non-technical losses detection,” Comput. Electr. Eng., vol. 37, no. 6, pp. 886–894, Nov. 2011. doi: 10.1016/j.compeleceng.2011.09.013
    [57]
    C. C. O. Ramos, A. N. de Souza, A. X. Falcão, and J. P. Papa, “New insights on nontechnical losses characterization through evolutionary-based feature selection,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 140–146, Jan. 2012. doi: 10.1109/TPWRD.2011.2170182
    [58]
    R. D. Trevizan, A. S. Bretas, and A. Rossoni, “Nontechnical losses detection: A discrete cosine transform and optimum-path forest based approach,” in Proc. North American Power Symp., Charlotte, NC, USA, 2015, pp. 1–6.
    [59]
    R. D. Trevizan, A. Rossoni, A. S. Bretas, D. da Silva Gazzana, R. de Podestá Martin, N. G. Bretas, A. L. Bettiol, A. Carniato, and L. F. do Nascimento Passos, “Non-technical losses identification using optimum-path forest and state estimation,” in Proc. IEEE Eindhoven PowerTech, Eindhoven, Netherlands, 2015, pp. 1–6.
    [60]
    S. E. N. Fernandes, D. R. Pereira, C. C. O. Ramos, A. N. Souza, D. S. Gastaldello, and J. P. Papa, “A probabilistic optimum-path forest classifier for non-technical losses detection,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3226–3235, May 2019. doi: 10.1109/TSG.2018.2821765
    [61]
    D. Mashima and A. A. Cárdenas, “Evaluating electricity theft detectors in smart grid networks,” in Proc. Int. Workshop on Recent Advances in Intrusion Detection, Amsterdam, The Netherlands, 2012, pp. 210–229.
    [62]
    R. Punmiya and S. Choe, “Energy theft detection using gradient boosting theft detector with feature engineering-based preprocessing,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2326–2329, Mar. 2019. doi: 10.1109/TSG.2019.2892595
    [63]
    N. Dahringer, Electricity theft detection using machine learning. 2017. arXiv preprint arXiv: 1708.05907
    [64]
    A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra, “Decision tree and SVM-based data analytics for theft detection in smart grid,” IEEE Trans. Ind. Inform., vol. 12, no. 3, pp. 1005–1016, Jun. 2016. doi: 10.1109/TII.2016.2543145
    [65]
    S. Aziz, S. Z. H. Naqvi, M. U. Khan, and T. Aslam, “Electricity theft detection using empirical mode decomposition and k-nearest neighbors,” in Proc. Int. Conf. Emerging Trends in Smart Technologies, Karachi, Pakistan, 2020, pp. 1–5.
    [66]
    E. W. S. Angelos, O. R. Saavedra, O. A. C. Cortés, and A. N. de Souza, “Detection and identification of abnormalities in customer consumptions in power distribution systems,” IEEE Trans. Power Deliv., vol. 26, no. 4, pp. 2436–2442, Oct. 2011. doi: 10.1109/TPWRD.2011.2161621
    [67]
    T. V. Babu, T. S. Murthy, and B. Sivaiah, “Detecting unusual customer consumption profiles in power distribution systems-APSPDCL,” in Proc. IEEE Int. Conf. Computational Intelligence and Computing Research, Enathi, India, 2013, pp. 1–5.
    [68]
    E. Terciyanli, E. Eryigit, T. Emre, and S. Caliskan, “Score based non-technical loss detection algorithm for electricity distribution networks,” in Proc. 5th Int. Istanbul Smart Grid and Cities Congress and Fair, Istanbul, Turkey, 2017, pp. 180–184.
    [69]
    J. L. Viegas and S. M. Vieira, “Clustering-based novelty detection to uncover electricity theft,” in Proc. IEEE Int. Conf. Fuzzy Systems, Naples, Italy, 2017, pp. 1–6.
    [70]
    Y. F. Zhang, Q. Ai, H. Wang, Z. Y. Li, and X. Q. Zhou, “Energy theft detection in an edge data center using threshold-based abnormality detector,” Int. J. Electr. Power Energy Syst., vol. 121, p. 106162, Oct. 2020.
    [71]
    K. D. Zheng, Y. Wang, Q. X. Chen, and Y. P. Li, “Electricity theft detecting based on density-clustering method,” in Proc. IEEE Innovative Smart Grid Technologies-Asia, Auckland, New Zealand, 2017, pp. 1–6.
    [72]
    K. D. Zheng, Q. X. Chen, Y. Wang, C. Q. Kang, and Q. Xia, “A novel combined data-driven approach for electricity theft detection,” IEEE Trans. Ind. Inform., vol. 15, no. 3, pp. 1809–1819, Mar. 2019. doi: 10.1109/TII.2018.2873814
    [73]
    S. K. Singh, R. Bose, and A. Joshi, “PCA based electricity theft detection in advanced metering infrastructure,” in Proc. 7th Int. Conf. Power Systems, Pune, India, 2017, pp. 441–445.
    [74]
    S. K. Singh, R. Bose, and A. Joshi, “Energy theft detection for AMI using principal component analysis based reconstructed data,” IET Cyber-Phys. Syst.:Theory Appl., vol. 4, no. 2, pp. 179–185, Jun. 2019. doi: 10.1049/iet-cps.2018.5050
    [75]
    S. K. Singh, R. Bose, and A. Joshi, “Entropy-based electricity theft detection in AMI network,” IET Cyber-Phys. Syst.:Theory Appl., vol. 3, no. 2, pp. 99–105, Jun. 2018. doi: 10.1049/iet-cps.2017.0063
    [76]
    K. Pedramnia and S. Shojaei, “Detection of false data injection attack in smart grid using decomposed nearest neighbor techniques,” in Proc. 10th Smart Grid Conf., Kashan, Iran, 2020, pp. 1–6.
    [77]
    A. Pasdar and S. Mirzakuchaki, “A solution to remote detecting of illegal electricity usage based on smart metering,” in Proc. 2nd Int. Workshop on Soft Computing Applications, Gyula, Hungary, 2007, pp. 163–167.
    [78]
    S. K. A. Zaidi, H. Masroor, S. R. Ashraf, and A. Hassan, “Design and implementation of low cost electronic prepaid energy meter,” in Proc. IEEE Int. Multitopic Conf., Karachi, Pakistan, 2008, pp. 548–552.
    [79]
    P. Kadurek, J. Blom, J. F. G. Cobben, and W. L. Kling, “Theft detection and smart metering practices and expectations in the Netherlands,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. Europe, Gothenburg, Sweden, 2010, pp. 1–6.
    [80]
    K. K. Kee, S. M. F. Shahab, and C. J. Loh, “Design and development of an innovative smart metering system with GUI-based NTL detection platform,” in Proc. 4th IET Clean Energy and Technology Conf., Kuala Lumpur, Malaysia, 2016, pp. 1–8.
    [81]
    B. Nithin, S. Bhaskaran, and S. Ullas, “Advanced metering infrastructure (AMI) with combination of peak load management system (PLMS) and theft protection,” in Proc. Online Int. Conf. Green Engineering and Technologies, Coimbatore, India, 2016, pp. 1–6.
    [82]
    K. Ask, N. K. Singh, A. K. Singh, D. K. Singh, and K. Anand, “Design and simulation of smart prepaid-postpaid energy meter with alarm and theft control,” in Proc. 5th IEEE Uttar Pradesh Section Int. Conf. Electrical, Electronics and Computer Engineering, Gorakhpur, India, 2018, pp. 1–6.
    [83]
    C. J. Bandim, J. E. R. Alves, A. V. Pinto, F. C. Souza, M. R. B. Loureiro, C. A. Magalhaes, and F. Galvez-Durand, “Identification of energy theft and tampered meters using a central observer meter: A mathematical approach,” in Proc. IEEE PES Transmission and Distribution Conf. Exposition, Dallas, TX, USA, 2003, pp. 163–168.
    [84]
    A. R. Devidas and M. V. Ramesh, “Wireless smart grid design for monitoring and optimizing electric transmission in India,” in Proc. 4th Int. Conf. Sensor Technologies and Applications, Venice, Italy, 2010, pp. 637–640.
    [85]
    R. V. P. Yerra, A. K. Bharathi, P. Rajalakshmi, and U. B. Desai, “WSN based power monitoring in smart grids,” in Proc. 7th Int. Conf. Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, Australia, 2011, pp. 401–406.
    [86]
    S. McLaughlin, B. Holbert, S. Zonouz, and R. Berthier, “AMIDS: A multi-sensor energy theft detection framework for advanced metering infrastructures,” in Proc. IEEE 3rd Int. Conf. Smart Grid Communications, Taiwan, China, 2012, pp. 354–359.
    [87]
    S. McLaughlin, B. Holbert, A. Fawaz, R. Berthier, and S. Zonouz, “A multi-sensor energy theft detection framework for advanced metering infrastructures,” IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1319–1330, Jul. 2013. doi: 10.1109/JSAC.2013.130714
    [88]
    S. Misra, P. V. Krishna, V. Saritha, and M. S. Obaidat, “Learning automata as a utility for power management in smart grids,” IEEE Commun. Mag., vol. 51, no. 1, pp. 98–104, Jan. 2013. doi: 10.1109/MCOM.2013.6400445
    [89]
    C. H. Lo and N. Ansari, “CONSUMER: A novel hybrid intrusion detection system for distribution networks in smart grid,” IEEE Trans. Emerg. Top. Comput., vol. 1, no. 1, pp. 33–44, Jun. 2013. doi: 10.1109/TETC.2013.2274043
    [90]
    M. Lydia, G. E. P. Kumar, and Y. Levron, “Detection of electricity theft based on compressed sensing,” in Proc. 5th Int. Conf. Advanced Computing & Communication Systems, Coimbatore, India, 2019, pp. 995–1000.
    [91]
    X. F. Xia, Y. Xiao, and W. Liang, “SAI: A suspicion assessment-based inspection algorithm to detect malicious users in smart grid,” IEEE Trans. Inform. Foren. Secur., vol. 15, pp. 361–374, Jun. 2019.
    [92]
    J. Y. Kim, Y. M. Hwang, Y. G. Sun, I. Sim, D. I. Kim, and X. B. Wang, “Detection for non-technical loss by smart energy theft with intermediate monitor meter in smart grid,” IEEE Access, vol. 7, pp. 129043–129053, Sept. 2019. doi: 10.1109/ACCESS.2019.2940443
    [93]
    X. J. Zeng, G. M. Jin, W. Y. Jin, and Y. Xu, “Anti theft and monitoring system of street lamp power cables,” in Proc. Asia-Pacific Power and Energy Engineering Conf., Wuhan, China, 2009, pp. 1–4.
    [94]
    O. M. Komolafe and K. M. Udofia, “A technique for electrical energy theft detection and location in low voltage power distribution systems,” Eng. Appl. Sci., vol. 5, no. 2, pp. 41–49, Apr. 2020.
    [95]
    P. Choudhary and J. N. Bera, “SMS based load flow monitoring and analysis for theft location detection in rural distribution systems,” in Proc. IEEE Calcutta Conf., Kolkata, India, 2020, pp. 386–390.
    [96]
    S. S. S. R. Depuru, L. F. Wang, and V. Devabhaktuni, “A conceptual design using harmonics to reduce pilfering of electricity,” in IEEE PES General Meeting, Minneapolis, MN, USA, 2010, pp. 1–7.
    [97]
    S. S. S. R. Depuru, L. F. Wang, and V. Devabhaktuni, “Electricity theft: Overview, issues, prevention and a smart meter based approach to control theft,” Energy Policy, vol. 39, no. 2, pp. 1007–1015, Feb. 2011. doi: 10.1016/j.enpol.2010.11.037
    [98]
    S. Salinas, M. Li, and P. Li, “Privacy-preserving energy theft detection in smart grids,” in Proc. 9th Annu. IEEE Communications Society Conf. Sensor, Mesh and Ad Hoc Communications and Networks, Seoul, Korea (South), 2012, pp. 605–613.
    [99]
    S. Salinas, M. Li, and P. Li, “Privacy-preserving energy theft detection in smart grids: A P2P computing approach,” IEEE J. Sel. Areas Commun., vol. 31, no. 9, pp. 257–267, Sept. 2013. doi: 10.1109/JSAC.2013.SUP.0513023
    [100]
    S. Weckx, C. Gonzalez, J. Tant, T. De Rybel, and J. Driesen, “Parameter identification of unknown radial grids for theft detection,” in Proc. 3rd IEEE PES Innovative Smart Grid Technologies Europe, Berlin, Germany, 2012, pp. 1–6.
    [101]
    S. C. Yip, K. Wong, W. P. Hew, M. T. Gan, R. C. W. Phan, and S. W. Tan, “Detection of energy theft and defective smart meters in smart grids using linear regression,” Int. J. Electr. Power Energy Syst., vol. 91, pp. 230–240, Oct. 2017. doi: 10.1016/j.ijepes.2017.04.005
    [102]
    S. C. Yip, W. N. Tan, C. Tan, M. T. Gan, and K. Wong, “An anomaly detection framework for identifying energy theft and defective meters in smart grids,” Int. J. Electr. Power Energy Syst., vol. 101, pp. 189–203, Oct. 2018. doi: 10.1016/j.ijepes.2018.03.025
    [103]
    Z. F. Xiao, Y. Xiao, and D. H. C. Du, “Non-repudiation in neighborhood area networks for smart grid,” IEEE Commun. Mag., vol. 51, no. 1, pp. 18–26, Jan. 2013. doi: 10.1109/MCOM.2013.6400434
    [104]
    Y. L. Lo, S. C. Huang, and C. N. Lu, “Non-technical loss detection using smart distribution network measurement data,” in IEEE PES Innovative Smart Grid Technologies, Tianjin, China, 2012, pp. 1–5.
    [105]
    Y. Gu, T. Liu, D. Wang, X. H. Guan, and Z. B. Xu, “Bad data detection method for smart grids based on distributed state estimation,” in Proc. IEEE Int. Conf. Communications, Budapest, Hungary, 2013, pp. 4483–4487.
    [106]
    W. P. Luan, G. Wang, Y. X. Yu, J. Y. Lin, W. X. Zhang, and Q. Liu, “Energy theft detection via integrated distribution state estimation based on AMI and SCADA measurements,” in Proc. 5th Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies, Changsha, China, 2015, pp. 751–756.
    [107]
    S. C. Huang, Y. L. Lo, and C. N. Lu, “Non-technical loss detection using state estimation and analysis of variance,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2959–2966, Aug. 2013. doi: 10.1109/TPWRS.2012.2224891
    [108]
    T. Liu, Y. Gu, D. Wang, Y. H. Gui, and X. H. Guan, “A novel method to detect bad data injection attack in smart grid,” in Proc. IEEE Conf. Computer Communications Workshops, Turin, Italy, 2013, pp. 49–54.
    [109]
    P. Jokar, N. Arianpoo, and V. C. M. Leung, “Intrusion detection in advanced metering infrastructure based on consumption pattern,” in Proc. IEEE Int. Conf. Communications, Budapest, Hungary, 2013, pp. 4472–4476.
    [110]
    Y. Liu and S. Y. Hu, “Cyberthreat analysis and detection for energy theft in social networking of smart homes,” IEEE Trans. Comput. Soc. Syst., vol. 2, no. 4, pp. 148–158, Dec. 2015. doi: 10.1109/TCSS.2016.2519506
    [111]
    X. Liu and Z. Y. Li, “False data attacks against AC state estimation with incomplete network information,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2239–2248, Sept. 2017. doi: 10.1109/TSG.2016.2521178
    [112]
    A. Rossoni, S. Braunstein, R. D. Trevizan, A. S. Bretas, and N. G. Bretas, “Smart distribution power losses estimation: A hybrid state estimation approach,” in Proc. IEEE Power and Energy Society General Meeting, Boston, MA, USA, 2016, pp. 1–5.
    [113]
    Z. Kazemi, A. A. Safavi, F. Naseri, L. Urbas, and P. Setoodeh, “A secure hybrid dynamic-state estimation approach for power systems under false data injection attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 12, pp. 7275–7286, Dec. 2020. doi: 10.1109/TII.2020.2972809
    [114]
    A. A. Cárdenas, S. Amin, G. Schwartz, R. Dong, and S. Sastry, “A game theory model for electricity theft detection and privacy-aware control in AMI systems,” in Proc. 50th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, IL, USA, 2012, pp. 1830–1837.
    [115]
    L. Liu, Y. C. Zhou, Y. Liu, and S. Y. Hu, “Dynamic programming based game theoretic algorithm for economical multi-user smart home scheduling,” in Proc. IEEE 57th Int. Midwest Symp. Circuits and Systems, College Station, TX, USA, 2014, pp. 362–365.
    [116]
    C. H. Lin, S. J. Chen, C. L. Kuo, and J. L. Chen, “Non-cooperative game model applied to an advanced metering infrastructure for non-technical loss screening in micro-distribution systems,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2468–2469, Sept. 2014. doi: 10.1109/TSG.2014.2327809
    [117]
    L. F. Wei, A. Sundararajan, A. I. Sarwat, S. Biswas, and E. Ibrahim, “A distributed intelligent framework for electricity theft detection using Benford’s law and stackelberg game,” in Proc. Resilience Week, Wilmington, DE, USA, 2017, pp. 5–11.
    [118]
    V. Vapnik, “Estimation of Dependences Based on Empirical Data Berlin,” 1982.
    [119]
    S. S. S. R. Depuru, L. F. Wang, V. Devabhaktuni, and R. C. Green, “High performance computing for detection of electricity theft,” Int. J. Electr. Power Energy Syst., vol. 47, pp. 21–30, May 2013. doi: 10.1016/j.ijepes.2012.10.031
    [120]
    M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)–A review of applications in the atmospheric sciences,” Atmos. Environ., vol. 32, no. 14–15, pp. 2627–2636, Aug. 1998. doi: 10.1016/S1352-2310(97)00447-0
    [121]
    B. Coma-Puig, J. Carmona, R. Gavalda, S. Alcoverro, and V. Martin, “Fraud detection in energy consumption: A supervised approach,” in Proc. IEEE Int. Conf. Data Science and Advanced Analytics, Montreal, QC, Canada, 2016, pp. 120–129.
    [122]
    S. C. Yip, C. Tan, W. N. Tan, M. T. Gan, K. Wong, and R. C. W. Phan, “Detection of energy theft and metering defects in advanced metering infrastructure using analytics,” in Proc. Int. Conf. Smart Grid and Clean Energy Technologies, Kajang, Malaysia, 2018, pp. 15–22.
    [123]
    S. Amin, G. A. Schwartz, A. A. Cárdenas, and S. S. Sastry, “Game-theoretic models of electricity theft detection in smart utility networks: Providing new capabilities with advanced metering infrastructure,” IEEE Control Systems Magazine, vol. 35, no. 1, pp. 66–81, Feb. 2015. doi: 10.1109/MCS.2014.2364711
    [124]
    J. N. Li, Y. Y. Yang, and J. S. Sun, SearchFromFree: Adversarial measurements for machine learning-based energy theft detection. 2020. arXiv preprint arXiv: 2006.03504
    [125]
    ISSDA–commission for energy regulation (CER). [Online]. https://www.ucd.ie/issda/data/commissionforenergyregulationcer/, Accessed on: Mar. 03, 2021.
    [126]
    A. Maamar and K. Benahmed, “Machine learning techniques for energy theft detection in AMI,” in Proc. Int. Conf. Software Engineering and Information Management, Casablanca, Morocco, 2018, pp. 57–62.
    [127]
    H. Zhang, B. Liu, and H. Y. Wu, “Smart grid cyber-physical attack and defense: A review,” IEEE Access, vol. 9, pp. 29641–29659, Feb. 2021. doi: 10.1109/ACCESS.2021.3058628
    [128]
    I. C. Alert, “Cyber-attack against Ukrainian critical infrastructure,” Cybersecurity & Infrastructure Security Agency, Washington DC, USA, Tech. Rep. ICS Alert (IR-ALERT-H-16-056-01), 2016.
    [129]
    A. Alsharif, M. Nabil, A. Sherif, M. Mahmoud, and M. Song, “MDMS: Efficient and privacy-preserving multidimension and multisubset data collection for AMI networks,” IEEE Int. Things J., vol. 6, no. 6, pp. 10363–10374, Dec. 2019. doi: 10.1109/JIOT.2019.2938776

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article views (2420) PDF downloads(254) Cited by()

    Highlights

    • Electricity theft is one of the major issues in developing countries which is affecting their economy badly.
    • Though many new energy theft detection (ETD) techniques have been proposed by utilizing different data mining (DM) techniques, state & network (S&N) based techniques, and game theory (GT) techniques.
    • A detailed survey is presented where many state-of-the-art ETD techniques are studied and analysed for their strengths and limitations.
    • Three levels of taxonomy are presented to classify state-of-the-art ETD techniques.
    • Different types and ways of energy theft and their consequences are studied and summarized and different parameters to benchmark the performance of proposed techniques are extracted from literature.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return