IEEE/CAA Journal of Automatica Sinica
Citation:  W. Xue, X. L. Luan, S. Y. Zhao, and F. Liu, “A fusion Kalman filter and UFIR estimator using the influence function method,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 709–718, Apr. 2022. doi: 10.1109/JAS.2021.1004389 
[1] 
Y. Zhou, Y. C. Soh, and J. X. Shen, “Speed estimation and nonmatched timevarying parameter identification for a DC motor with hybrid slidingmode observer,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5539–5549, 2012.

[2] 
D. Ding, Q.L. Han, X. Ge, and J. Wang, “Secure state estimation and control of cyberphysical systems: A survey,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 51, no. 1, Article No. 176, Jan. 2021. doi: 10.1109/TSMC.2020.3041121

[3] 
M. Kordestani, A. A. Safavi, and M. Saif, “Recent survey of largescale systems: Architectures, controller strategies, and industrial applications,” IEEE Systems Journal, pp. 1–14, 2021.

[4] 
Y. Tian and Z. Wang, “H_{∞} performance state estimation for static neural networks with timevarying delays via two improved inequalities,” IEEE Trans. Circuits and Systems Ⅱ:Express Briefs, vol. 68, no. 1, pp. 321–325, 2020.

[5] 
D. Ding, Z. Wang, and Q.L. Han, “A setmembership approach to eventtriggered filtering for general nonlinear systems over sensor networks,” IEEE Trans. Automatic Control, vol. 65, no. 4, pp. 1792–1799, 2019.

[6] 
R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” Journal of Basic Engineering, vol. 83, pp. 95–108, 1961.

[7] 
F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. OrlowskaKowalska, and S. Katsura, “Industrial applications of the kalman filter: A review,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5458–5471, 2013. doi: 10.1109/TIE.2012.2236994

[8] 
R. Antonello, K. Ito, and R. Oboe, “Acceleration measurement drift rejection in motion control systems by augmentedstate kinematic kalman filter,” IEEE Trans. Industrial Electronics, vol. 63, no. 3, pp. 1953–1961, 2015.

[9] 
F. Auger, J. M. Guerrero, M. Hilairet, S. Katsura, E. Monmasson, and T. OrlowskaKowalska, “Introduction to the special section on industrial applications and implementation issues of the kalman filter,” IEEE Trans. Industrial Electronics, vol. 59, no. 11, pp. 4165–4168, 2012. doi: 10.1109/TIE.2012.2194411

[10] 
V. Smidl and A. Quinn, “Variational bayesian filtering,” IEEE Trans. Signal Processing, vol. 56, no. 10, pp. 5020–5030, 2008. doi: 10.1109/TSP.2008.928969

[11] 
S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Proc. the IEEE, vol. 92, no. 3, pp. 401–422, 2004. doi: 10.1109/JPROC.2003.823141

[12] 
H. Cox, “On the estimation of state variables and parameters for noisy dynamic systems,” IEEE Trans. Automatic Control, vol. 9, no. 1, pp. 5–12, 1964. doi: 10.1109/TAC.1964.1105635

[13] 
G. Garcia, S. Tarbouriech, and P. L. Peres, “Robust kalman filtering for uncertain discretetime linear systems,” Int. Journal of Robust and Nonlinear Control:IFACAffiliated Journal, vol. 13, no. 13, pp. 1225–1238, 2003. doi: 10.1002/rnc.838

[14] 
M. Karasalo and X. Hu, “An optimization approach to adaptive kalman filtering,” Automatica, vol. 47, no. 8, pp. 1785–1793, 2011. doi: 10.1016/j.automatica.2011.04.004

[15] 
Y. S. Shmaliy, “An iterative Kalmanlike algorithm ignoring noise and initial conditions,” IEEE Trans. Signal Processing, vol. 59, no. 6, pp. 2465–2473, 2011. doi: 10.1109/TSP.2011.2129516

[16] 
Y. S. Shmaliy, “Unbiased FIR filtering of discretetime polynomial statespace models,” IEEE Trans. Signal Processing, vol. 57, no. 4, pp. 1241–1249, 2008.

[17] 
C. K. Ahn and Y. S. Shmaliy, “New receding horizon FIR estimator for blind smart sensing of velocity via position measurements,” IEEE Trans. Circuits and Systems Ⅱ:Express Briefs, vol. 65, no. 1, pp. 135–139, 2017.

[18] 
Y. S. Shmaliy, J. MunozDiaz, and L. ArceoMiquel, “Optimal horizons for a oneparameter family of unbiased FIR filters,” Digital Signal Processing, vol. 18, no. 5, pp. 739–750, 2008. doi: 10.1016/j.dsp.2007.10.002

[19] 
A. Jazwinski, “Limited memory optimal filtering,” IEEE Trans. Automatic Control, vol. 13, no. 5, pp. 558–563, 1968. doi: 10.1109/TAC.1968.1098981

[20] 
A. H. Jazwinski, “Stochastic Processes and Filtering Theory”. Massachusetts, USA: Courier Corporation, 2007.

[21] 
S. Zhao, Y. S. Shmaliy, and F. Liu, “Fast computation of discrete optimal FIR estimates in white gaussian noise,” IEEE Signal Processing Letters, vol. 22, no. 6, pp. 718–722, 2014.

[22] 
Y. S. Shmaliy, S. Zhao, and C. K. Ahn, “Unbiased finite impluse response filtering: An iterative alternative to Kalman filtering ignoring noise and initial conditions,” IEEE Control Systems Magazine, vol. 37, no. 5, pp. 70–89, 2017. doi: 10.1109/MCS.2017.2718830

[23] 
Y. S. Shmaliy, F. Lehmann, S. Zhao, and C. K. Ahn, “Comparing robustness of the Kalman, H_{∞}, and UFIR filters,” IEEE Trans. Signal Processing, vol. 66, no. 13, pp. 3447–3458, 2018. doi: 10.1109/TSP.2018.2833811

[24] 
S. Soltani, M. Kordestani, P. K. Aghaee, and M. Saif, “Improved estimation for welllogging problems based on fusion of four types of kalman filters,” IEEE Trans. Geoscience and Remote Sensing, vol. 56, no. 2, pp. 647–654, 2017.

[25] 
M. Kordestani, A. Chibakhsh, and M. Saif, “A control oriented cybersecure strategy based on multiple sensor fusion,” in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), 2019, pp. 1875–1881.

[26] 
S. Y. Cho and B. D. Kim, “Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system,” Automatica, vol. 44, no. 8, pp. 2040–2047, 2008. doi: 10.1016/j.automatica.2007.11.009

[27] 
S. Zhao, Y. S. Shmaliy, P. Shi, and C. K. Ahn, “Fusion Kalman/UFIR filter for state estimation with uncertain parameters and noise statistics,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3075–3083, 2016.

[28] 
S. H. You, C. K. Ahn, Y. S. Shmaliy, and S. Zhao, “Fusion Kalman and weighted UFIR state estimator with improved accuracy,” IEEE Trans. Industrial Electronics, vol. 67, no. 12, pp. 10 713–10 722, 2019.

[29] 
S. H. You, C. K. Ahn, S. Zhao, and Y. S. Shmaliy, “Frobenius normbased unbiased FIR fusion filtering for wireless sensor networks,” IEEE Trans. Industrial Electronics, vol. 69, no. 2, pp. 1867–1876, Feb. 2022.

[30] 
Y. Xu, Y. S. Shmaliy, T. Shen, D. Chen, M. Sun, and Y. Zhuang, “INS/UWBbased quadrotor localization under colored measurement noise,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6384–6392, 2021. doi: 10.1109/JSEN.2020.3038242

[31] 
P. W. Koh and P. Liang, “Understanding blackbox predictions via influence functions,” in Proc, Int. Conf. Machine Learning, PMLR, 2017, pp. 1885–1894.

[32] 
Y. S. Shmaliy and O. IbarraManzano, “Timevariant linear optimal finite impulse response estimator for discrete statespace models,” Int. Journal of Adaptive Control and Signal Processing, vol. 26, no. 2, pp. 95–104, 2012. doi: 10.1002/acs.1274

[33] 
S. Zhao, Y. S. Shmaliy, and F. Liu, “Fast Kalmanlike optimal unbiased FIR filtering with applications,” IEEE Trans. Signal Processing, vol. 64, no. 9, pp. 2284–2297, 2016. doi: 10.1109/TSP.2016.2516960

[34] 
Y. S. Shmaliy, “Linear optimal FIR estimation of discrete timeinvariant statespace models,” IEEE Trans. Signal Processing, vol. 58, no. 6, pp. 3086–3096, 2010. doi: 10.1109/TSP.2010.2045422

[35] 
R. D. Cook and S. Weisberg, Residuals and Influence in Regression. New York, USA: Chapman and Hall, 1982.

[36] 
J. R. Magnus, “On the concept of matrix derivative,” Journal of Multivariate Analysis, vol. 101, no. 9, pp. 2200–2206, 2010. doi: 10.1016/j.jmva.2010.05.005

[37] 
S. Zhao, Y. S. Shmaliy, C. K. Ahn, and F. Liu, “Selftuning unbiased finite impulse response filtering algorithm for processes with unknown measurement noise covariance,” IEEE Trans. Control Systems Technology, vol. 29, no. 3, pp. 1372–1379, May 2021.
