IEEE/CAA Journal of Automatica Sinica
Citation:  L. G. Wu, J. Liu, S. Vazquez, and S. K. Mazumder, “Sliding mode control in power converters and drives: A review,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 392–406, Mar. 2022. doi: 10.1109/JAS.2021.1004380 
[1] 
E. Shigin, “On improvement of transient processes with the help of correction networks with varying parameters,” Automat. Remote Contr., no. 4, pp. 299–304, 1958.

[2] 
S. Emelyanov, “The use of nonlinear corrective devices of the key type to improve the behavior of second order control systems,” Automatic Remote Control, vol. 7, pp. 844–859, 1959.

[3] 
U. Itkis, Control Systems of Variable Structure. New York: Wiley, 1976.

[4] 
V. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automatic Control, vol. 22, no. 2, pp. 212–222, 1977. doi: 10.1109/TAC.1977.1101446

[5] 
C.C. Wen and C.C. Cheng, “Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability,” Journal of the Franklin Institute, vol. 345, no. 8, pp. 926–941, 2008. doi: 10.1016/j.jfranklin.2008.06.003

[6] 
H. H. Choi, “LMIbased sliding surface design for integral sliding mode control of mismatched uncertain systems,” IEEE Trans. Automatic Control, vol. 52, no. 4, pp. 736–742, 2007. doi: 10.1109/TAC.2007.894543

[7] 
J. Yang, S. Li, and X. Yu, “Slidingmode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Trans. Industrial Electronics, vol. 60, no. 1, pp. 160–169, 2012.

[8] 
W.J. Cao and J.X. Xu, “Nonlinear integraltype sliding surface for both matched and unmatched uncertain systems,” IEEE Trans. Automatic Control, vol. 49, no. 8, pp. 1355–1360, 2004. doi: 10.1109/TAC.2004.832658

[9] 
Y. Jiang, D. Clements, and T. Hesketh, “Rejection of unmatched disturbances in sliding mode control,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 3473–3477, 1996. doi: 10.1016/S14746670(17)582154

[10] 
V. Utkin, J. Gulder, and J. Shi, Sliding Mode Control in Electromechanical Systems. Taylor & Francis Group, 2009.

[11] 
X. Yu and O. Kaynak, “Slidingmode control with soft computing: A survey,” IEEE Trans. Industrial Electronics, vol. 56, no. 9, pp. 3275–3285, 2009. doi: 10.1109/TIE.2009.2027531

[12] 
A. Sabanovic, L. M. Fridman, and S. K. Spurgeon, Variable Structure Systems: From Principles to Implementation. IET, 2004, vol. 66.

[13] 
O. Kaynak, K. Erbatur, and M. Ertugnrl, “The fusion of computationally intelligent methodologies and slidingmode controla survey,” IEEE Trans. Industrial Electronics, vol. 48, no. 1, pp. 4–17, 2001. doi: 10.1109/41.904539

[14] 
V. M. Panchade, R. H. Chile, and B. M. Patre, “A survey on sliding mode control strategies for induction motors,” Annual Reviews in Control, vol. 37, no. 2, pp. 289–307, 2013. doi: 10.1016/j.arcontrol.2013.09.008

[15] 
D. A. Haghighi and S. Mobayen, “Design of an adaptive supertwisting decoupled terminal sliding mode control scheme for a class of fourthorder systems,” ISA Transactions, vol. 75, pp. 216–225, 2018. doi: 10.1016/j.isatra.2018.02.006

[16] 
G. Bartolini, A. Pisano, E. Punta, and E. Usai, “A survey of applications of secondorder sliding mode control to mechanical systems,” Int. Journal of Control, vol. 76, no. 910, pp. 875–892, 2003. doi: 10.1080/0020717031000099010

[17] 
Y. Shtessel, C. Edwards, L. Fridman, A. Levant et al., Sliding Mode Control and Observation. Springer, 2014, vol. 10.

[18] 
L. Wu, P. Shi, and X. Su, Sliding Mode Control of Uncertain Parameterswitching Hybrid Systems. John Wiley & Sons, 2014.

[19] 
X. Xi, S. Mobayen, H. Ren, and S. Jafari, “Robust finitetime synchronization of a class of chaotic systems via adaptive global sliding mode control,” Journal of Vibration and Control, vol. 24, no. 17, pp. 3842–3854, 2018. doi: 10.1177/1077546317713532

[20] 
S. Mobayen and F. Tchier, “Nonsingular fast terminal slidingmode stabilizer for a class of uncertain nonlinear systems based on disturbance observer,” Scientia Iranica, vol. 24, no. 3, pp. 1410–1418, 2017. doi: 10.24200/sci.2017.4123

[21] 
S.C. Tan, Y.M. Lai, and C.K. Tse, Sliding Mode Control of Switching Power Converters: Techniques and Implementation. CRC Press, 2011.

[22] 
J. Holtz and X. Qi, “Optimal control of mediumvoltage drives – An overview,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5472–5481, 2013. doi: 10.1109/TIE.2012.2230594

[23] 
Y. Sun, Y. Wang, Z. Wei, G. Sun, and X. Wu, “Robust H_{∞} load frequency control of multiarea power system with time delay: A sliding mode control approach,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 610–617, 2018. doi: 10.1109/JAS.2017.7510649

[24] 
G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverterfed AC motorsa survey,” IEEE Trans. Industrial Electronics, vol. 51, no. 4, pp. 744–757, 2004. doi: 10.1109/TIE.2004.831717

[25] 
J. I. Leon, S. Vazquez, and L. G. Franquelo, “Multilevel converters: Control and modulation techniques for their operation and industrial applications,” Proc. the IEEE, vol. 105, no. 11, pp. 2066–2081, Nov. 2017. doi: 10.1109/JPROC.2017.2726583

[26] 
X. Yu and O. Kaynak, “Sliding mode control made smarter: A computational intelligence perspective,” IEEE Systems,Man,and Cybernetics Magazine, vol. 3, no. 2, pp. 31–34, 2017. doi: 10.1109/MSMC.2017.2663559

[27] 
C. M. Martínez and D. Cao, “Integrated energy management for electrified vehicles,” IhorizonEnabled Energy Management for Electrified Vehicles, pp. 15–75, 2019.

[28] 
A. Djoudi, H. Chekireb, S. Bacha, et al, “Lowcost sliding mode control of WECS based on DFIG with stability analysis,” Turkish Journal of Electrical Engineering &Computer Sciences, vol. 23, no. 6, pp. 1698–1714, 2015.

[29] 
V. Pande, U. Mate, and S. Kurode, “Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG,” Electric Power Systems Research, vol. 100, pp. 73–81, 2013. doi: 10.1016/j.jpgr.2013.03.001

[30] 
C. Edwards and S. Spurgeon, Sliding Mode Control: Theory and Applications. CRC Press, 1998.

[31] 
H. Lee and V. I. Utkin, “Chattering suppression methods in sliding mode control systems,” Annual Reviews in Control, vol. 31, no. 2, pp. 179–188, 2007. doi: 10.1016/j.arcontrol.2007.08.001

[32] 
I. Boiko and L. Fridman, “Analysis of chattering in continuous slidingmode controllers,” IEEE Trans. Automatic Control, vol. 50, no. 9, pp. 1442–1446, 2005. doi: 10.1109/TAC.2005.854655

[33] 
Y. Feng, F. Han, and X. Yu, “Chattering free fullorder slidingmode control,” Automatica, vol. 50, no. 4, pp. 1310–1314, 2014. doi: 10.1016/j.automatica.2014.01.004

[34] 
P. V. Suryawanshi, P. D. Shendge, and S. B. Phadke, “A boundary layer sliding mode control design for chatter reduction using uncertainty and disturbance estimator,” Int. Journal of Dynamics and Control, vol. 4, no. 4, pp. 456–465, 2016. doi: 10.1007/s4043501501509

[35] 
S. Chakrabarty and B. Bandyopadhyay, “A generalized reaching law for discrete time sliding mode control,” Automatica, vol. 52, pp. 83–86, 2015. doi: 10.1016/j.automatica.2014.10.124

[36] 
S. Wen, M. Z. Chen, Z. Zeng, X. Yu, and T. Huang, “Fuzzy control for uncertain vehicle active suspension systems via dynamic slidingmode approach,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 47, no. 1, pp. 24–32, 2017. doi: 10.1109/TSMC.2016.2564930

[37] 
N. Bouarroudj, D. Boukhetala, and F. Boudjema, “Slidingmode controller based on fractional order calculus for a class of nonlinear systems,” Int. Journal of Electrical &Computer Engineering, vol. 6, no. 5, pp. 2239–2250, 2016.

[38] 
J. J. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surface with application to robot manipulator,” Int. Journal of Control, vol. 38, no. 2, pp. 931–938, 1983.

[39] 
W. Gao, Y. Wang, and A. Homaifa, “Discretetime variable structure control systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 117–122, 1995. doi: 10.1109/41.370376

[40] 
G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by secondorder sliding mode control,” IEEE Trans. Automatic Control, vol. 43, no. 2, pp. 241–246, 1998. doi: 10.1109/9.661074

[41] 
L. Wong, F. Leung, and P. Tam, “A chattering elimination algorithm for sliding mode control of uncertain nonlinear systems,” Mechatronics, vol. 8, no. 7, pp. 765–775, 1998. doi: 10.1016/S09574158(98)000312

[42] 
A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. Journal of Control, vol. 58, no. 6, pp. 1247–1263, 1993. doi: 10.1080/00207179308923053

[43] 
G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by secondorder sliding mode control,” IEEE Trans. Automatic Control, vol. 43, no. 2, pp. 241–246, 1998. doi: 10.1109/9.661074

[44] 
G. Bartolini, A. Pisano, and E. Usai, “Secondorder slidingmode control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783–1790, 2002. doi: 10.1016/S00051098(02)00081X

[45] 
S. Laghrouche, F. Plestan, and A. Glumineau, “Higher order sliding mode control based on integral sliding mode,” Automatica, vol. 43, no. 3, pp. 531–537, 2007. doi: 10.1016/j.automatica.2006.09.017

[46] 
A. Levant, “Principles of 2sliding mode design,” Automatica, vol. 43, no. 4, pp. 576–586, 2007. doi: 10.1016/j.automatica.2006.10.008

[47] 
R.J. Lian, “Adaptive selforganizing fuzzy slidingmode radial basisfunction neuralnetwork controller for robotic systems,” IEEE Trans. Industrial Electronics, vol. 61, no. 3, pp. 1493–1503, 2014. doi: 10.1109/TIE.2013.2258299

[48] 
J. Yu, J. Liu, Z. Wu, and H. Fang, “Depth control of a bioinspired robotic dolphin based on slidingmode fuzzy control method,” IEEE Trans. Industrial Electronics, vol. 65, no. 3, pp. 2429–2438, 2018. doi: 10.1109/TIE.2017.2745451

[49] 
D. Qian and G. Fan, “Neuralnetworkbased terminal sliding mode control for frequency stabilization of renewable power systems,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 3, pp. 706–717, 2018. doi: 10.1109/JAS.2018.7511078

[50] 
S.C. Tan, Y. Lai, C. K. Tse, and M. K. Cheung, “Adaptive feedforward and feedback control schemes for sliding mode controlled power converters,” IEEE Trans. Power Electronics, vol. 21, no. 1, pp. 182–192, 2006. doi: 10.1109/TPEL.2005.861191

[51] 
Y. Yin, J. Liu, S. Vazquez, L. Wu, and L. G. Franquelo, “Disturbance observer based second order sliding mode control for dcdc buck converters,” in Proc. IECON 2017Conf. of the IEEE Industrial Electronics Society, 2017, pp. 7117–7122.

[52] 
L. Malesani, R. G. Spiazzi, and P. Tenti, “Performance optimization of cuk converters by slidingmode control,” IEEE Trans. Power Electronics, vol. 10, no. 3, pp. 302–309, May 1995. doi: 10.1109/63.387995

[53] 
S. K. Mazumder, A. H. Nayfeh, and A. Borojevic, “Robust control of parallel dcdc buck converters by combining integralvariablestructure and multipleslidingsurface control schemes,” IEEE Trans. Power Electronics, vol. 17, no. 3, pp. 428–437, May 2002. doi: 10.1109/TPEL.2002.1004251

[54] 
A. Mehta and B. Naik, Sliding Mode Controllers for Power Electronic Converters. Springer, 2019.

[55] 
V. M. Nguyen and C. Lee, “Indirect implementations of slidingmode control law in bucktype converters,” in Proceedings Applied Power Electronics Conf. and Exposition (APEC), vol. 1. IEEE, 1996, pp. 111–115.

[56] 
S. K. Mazumder and S. L. Kamisetty, “Design and experimental validation of a multiphase VRM controller,” IEE Proceedings  Electric Power Applications, vol. 152, no. 5, pp. 1076–1084, 2005. doi: 10.1049/ipepa:20045165

[57] 
S.C. Tan, Y.M. Lai, and C. K. Tse, “A unified approach to the design of pwmbased slidingmode voltage controllers for basic dcdc converters in continuous conduction mode,” IEEE Trans. Circuits and Systems I:Regular Papers, vol. 53, no. 8, pp. 1816–1827, 2006. doi: 10.1109/TCSI.2006.879052

[58] 
S. C. Tan, Y. M. Lai, C. K. Tse, L. MartinezSalamero, and C. K. Wu, “A fastresponse slidingmode controller for boosttype converters with a wide range of operating conditions,” IEEE Trans. Industrial Electronics, vol. 54, no. 6, pp. 3276–3286, Dec. 2007. doi: 10.1109/TIE.2007.905969

[59] 
S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, “Gridconnected photovoltaic systems: An overview of recent research and emerging PV converter technology,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47–61, Mar. 2015. doi: 10.1109/MIE.2014.2376976

[60] 
Y. Yin, S. Vazquez, A. Marquez, J. Liu, J. I. Leon, L. Wu, and L. G. Franquelo, “Observerbased slidingmode control for gridconnected power converters under unbalanced grid conditions,” IEEE Trans. Industrial Electronics, vol. 69, no. 1, pp. 517–527, 2022. doi: 10.1109/TIE.2021.3050387

[61] 
R. Wang, Q. Sun, D. Ma, and Z. Liu, “The smallsignal stability analysis of the droopcontrolled converter in electromagnetic timescale,” IEEE Trans. Sustainable Energy, vol. 10, no. 3, pp. 1459–1469, 2019. doi: 10.1109/TSTE.2019.2894633

[62] 
W. Hu, C. Ruan, H. Nian, and D. Sun, “Zerosequence current suppression strategy with common mode voltage control for openend winding PMSM drives with common DC bus,” IEEE Trans. Industrial Electronics, DOI: 10.1109/TIE.2020.2988221.

[63] 
Q. Sun, R. Han, H. Zhang, J. Zhou, and J. M. Guerrero, “A multiagentbased consensus algorithm for distributed coordinated control of distributed generators in the energy internet,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3006–3019, 2015. doi: 10.1109/TSG.2015.2412779

[64] 
S. Vazquez, A. Marquez, R. Aguilera, D. Quevedo, J. I. Leon, and L. G. Franquelo, “Predictive optimal switching sequence direct power control for gridconnected power converters,” IEEE Trans. Industrial Electronics, vol. 62, no. 4, pp. 2010–2020, Apr. 2015. doi: 10.1109/TIE.2014.2351378

[65] 
J. Silva, “Sliding mode control of boosttype unitypowerfactor PWM rectifiers,” IEEE Trans. Industrial Electronics, vol. 46, no. 3, pp. 594–603, 1999. doi: 10.1109/41.767067

[66] 
J. Liu, S. Vazquez, L. Wu, A. Marquez, H. Gao, and L. G. Franquelo, “Extended state observerbased slidingmode control for threephase power converters,” IEEE Trans. Industrial Electronics, vol. 64, no. 1, pp. 22–31, 2017. doi: 10.1109/TIE.2016.2610400

[67] 
Y. Yin, W. Luo, J. Liu, S. Vazquez, L. Wu, and L. G. Franquelo, “Sliding mode control of threephase power converters with disturbance attenuation performance,” in Proc. 11th IEEE Int. Conf. on Compatibility, Power Electronics and Power Engineering (CPEPOWERENG). IEEE, 2017, pp. 270–275.

[68] 
Y. Yin, J. Liu, J. A. Sanchez, L. Wu, S. Vazquez, J. I. Leon, and L. G. Franquelo, “Observerbased adaptive sliding mode control of NPC converters: an RBF neural network approach,” IEEE Trans. Power Electronics, DOI: 10.1109/TPEL.2018.2853093.

[69] 
J. Hu, L. Shang, Y. He, and Z. Zhu, “Direct active and reactive power regulation of gridconnected DC/AC converters using sliding mode control approach,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 210–222, 2011. doi: 10.1109/TPEL.2010.2057518

[70] 
S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young, A. Marquez, and P. Zanchetta, “Model predictive control: A review of its applications in power electronics,” IEEE Industrial Electronics Magazine, vol. 8, no. 1, pp. 16–31, 2014. doi: 10.1109/MIE.2013.2290138

[71] 
M. P. Kazmierkowski and L. Malesani, “Current control techniques for threephase voltagesource PWM converters: a survey,” IEEE Trans. Industrial Electronics, vol. 45, no. 5, pp. 691–703, Oct. 1998. doi: 10.1109/41.720325

[72] 
S. Vazquez, J. A. Sanchez, J. M. Carrasco, J. I. Leon, and E. Galvan, “A modelbased direct power control for threephase power converters,” IEEE Trans. Industrial Electronics, vol. 55, no. 4, pp. 1647–1657, Apr. 2008. doi: 10.1109/TIE.2008.917113

[73] 
M. Malinowski, M. Jasiński, and M. P. Kazmierkowski, “Simple direct power control of threephase PWM rectifier using spacevector modulation (DPCSVM),” IEEE Trans. Industrial Electronics, vol. 51, no. 2, pp. 447–454, 2004. doi: 10.1109/TIE.2004.825278

[74] 
S. Bacha, I. Munteanu, A. I. Bratcu, et al, “Power electronic converters modeling and control,” Advanced Textbooks in Control and Signal Processing, vol. 454, Article No. 454, 2014.

[75] 
D. M. Vilathgamuwa, S. R. Wall, and R. D. Jackson, “Variable structure control of voltage sourced reversible rectifiers,” IEE Proceedings  Electric Power Applications, vol. 143, no. 1, pp. 18–24, Jan. 1996. doi: 10.1049/ipepa:19960039

[76] 
V. F. Pires and J. F. Silva, “Threephase singlestage fourswitch PFC buckboosttype rectifier,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 444–453, Apr. 2005. doi: 10.1109/TIE.2005.843911

[77] 
S. K. Mazumder, “A novel discrete control strategy for independent stabilization of parallel threephase boost converters by combining spacevector modulation with variablestructure control,” IEEE Trans. Power Electronics, vol. 18, no. 4, pp. 1070–1083, Jul. 2003. doi: 10.1109/TPEL.2003.813770

[78] 
K. Xing, F. C. Lee, D. Borojevic, Z. Ye, and S. Mazumder, “Interleaved PWM with discontinuous spacevector modulation,” IEEE Trans. Power Electronics, vol. 14, no. 5, pp. 906–917, Sep. 1999. doi: 10.1109/63.788496

[79] 
S. K. Mazumder, “Continuous and discrete variablestructure controls for parallel threephase boost rectifier,” IEEE Trans. Industrial Electronics, vol. 52, no. 2, pp. 340–354, Apr. 2005. doi: 10.1109/TIE.2005.843921

[80] 
C.T. Pan and T.C. Chen, “Modelling and analysis of a three phase PWM acdc convertor without current sensor,” IEE Proceedings B Electric Power Applications, vol. 140, no. 3, pp. 201–208, 1993. doi: 10.1049/ipb.1993.0024

[81] 
W.C. Lee, T.K. Lee, and D.S. Hyun, “Comparison of singlesensor current control in the dc link for threephase voltagesource PWM converters,” IEEE Trans. Industrial Electronics, vol. 48, no. 3, pp. 491–505, 2001. doi: 10.1109/41.925576

[82] 
D.C. Lee and D.S. Lim, “AC voltage and current sensorless control of threephase pwm rectifiers,” IEEE Trans. Power Electronics, vol. 17, no. 6, pp. 883–890, 2002. doi: 10.1109/TPEL.2002.805592

[83] 
S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Trans. Industrial Electronics, vol. 64, no. 2, pp. 935–947, 2017. doi: 10.1109/TIE.2016.2625238

[84] 
S. Vazquez, R. P. Aguilera, P. Acuna, J. Pou, J. I. Leon, L. G. Franquelo, and V. G. Agelidis, “Model predictive control for singlephase npc converters based on optimal switching sequences,” IEEE Trans. Industrial Electronics, vol. 63, no. 12, pp. 7533–7541, 2016. doi: 10.1109/TIE.2016.2594227

[85] 
H. H. Choi, N. T.T. Vu, and J.W. Jung, “Digital implementation of an adaptive speed regulator for a PMSM,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 3–8, 2011. doi: 10.1109/TPEL.2010.2055890

[86] 
S. Li and Z. Liu, “Adaptive speed control for permanentmagnet synchronous motor system with variations of load inertia,” IEEE Trans. Industrial Electronics, vol. 56, no. 8, pp. 3050–3059, 2009. doi: 10.1109/TIE.2009.2024655

[87] 
C.S. Chen, “TSKtype selforganizing recurrentneuralfuzzy control of linear microstepping motor drives,” IEEE Trans. Power Electronics, vol. 25, no. 9, pp. 2253–2265, 2010. doi: 10.1109/TPEL.2010.2046648

[88] 
T. Bernardes, V. F. Montagner, H. A. Gründling, and H. Pinheiro, “Discretetime sliding mode observer for sensorless vector control of permanent magnet synchronous machine,” IEEE Trans. Industrial Electronics, vol. 61, no. 4, pp. 1679–1691, 2014. doi: 10.1109/TIE.2013.2267700

[89] 
C. L. Baratieri and H. Pinheiro, “New variable gain supertwisting sliding mode observer for sensorless vector control of nonsinusoidal backEMF PMSM,” Control Engineering Practice, vol. 52, pp. 59–69, 2016. doi: 10.1016/j.conengprac.2016.04.003

[90] 
S. E. Ryvkin and E. P. Lever, Sliding Mode Control for Synchronous Electric Drives. CRC Press, 2011.

[91] 
F. Mohd Zaihidee, S. Mekhilef, and M. Mubin, “Robust speed control of PMSM using sliding mode control (SMC)a review,” Energies, vol. 12, no. 9, Article No. 1669, 2019. doi: 10.3390/en12091669

[92] 
W. Xu, A. K. Junejo, Y. Liu, and M. R. Islam, “Improved continuous fast terminal sliding mode control with extended state observer for speed regulation of PMSM drive system,” IEEE Trans. Vehicular Technology, vol. 68, no. 11, pp. 10465–10476, 2019. doi: 10.1109/TVT.2019.2926316

[93] 
A. K. Junejo, W. Xu, C. Mu, M. M. Ismail, and Y. Liu, “Adaptive speed control of PMSM drive system based a new slidingmode reaching law,” IEEE Trans. Power Electronics, vol. 35, no. 11, pp. 12110–12121, 2020. doi: 10.1109/TPEL.2020.2986893

[94] 
X. Zhang, L. Sun, K. Zhao, and L. Sun, “Nonlinear speed control for pmsm system using slidingmode control and disturbance compensation techniques,” IEEE Trans. Power Electronics, vol. 28, no. 3, pp. 1358–1365, 2013. doi: 10.1109/TPEL.2012.2206610

[95] 
F.J. Lin and S.L. Chiu, “Adaptive fuzzy slidingmode control for PM synchronous servo motor drives,” IEE ProceedingsControl Theory and Applications, vol. 145, no. 1, pp. 63–72, 1998. doi: 10.1049/ipcta:19981683

[96] 
C. Lascu, I. Boldea, and F. Blaabjerg, “Variablestructure direct torque controla class of fast and robust controllers for induction machine drives,” IEEE Trans. Industrial Electronics, vol. 51, no. 4, pp. 785–792, 2004. doi: 10.1109/TIE.2004.831724

[97] 
C. Lascu, I. Boldea, and F. Blaabjer, “Supertwisting sliding mode control of torque and flux in permanent magnet synchronous machine drives,” in Proc. IECON 39th Annual Conf. of the IEEE Industrial Electronics Society, Nov 2013, pp. 3171–3176.

[98] 
M. P. Kazmierkowski, L. G. Franquelo, J. Rodriguez, M. A. Perez, and J. I. Leon, “Highperformance motor drives,” IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 6–26, Sept. 2011. doi: 10.1109/MIE.2011.942173

[99] 
E. Zerdali and M. Barut, “The comparisons of optimized extended kalman filters for speedsensorless control of induction motors,” IEEE Trans. Industrial Electronics, vol. 64, no. 6, pp. 4340–4351, 2017. doi: 10.1109/TIE.2017.2674579

[100] 
G. Yang and T.H. Chin, “Adaptivespeed identification scheme for a vectorcontrolled speed sensorless inverterinduction motor drive,” IEEE Trans. Industry Applications, vol. 29, no. 4, pp. 820–825, 1993. doi: 10.1109/28.232001

[101] 
S. Chi, Z. Zhang, and L. Xu, “Slidingmode sensorless control of directdrive PM synchronous motors for washing machine applications,” IEEE Trans. Industry Applications, vol. 45, no. 2, pp. 582–590, 2009. doi: 10.1109/TIA.2009.2013545

[102] 
F. Nollet, T. Floquet, and W. Perruquetti, “Observerbased second order sliding mode control laws for stepper motors,” Control Engineering Practice, vol. 16, no. 4, pp. 429–443, 2008. doi: 10.1016/j.conengprac.2007.05.008

[103] 
Y. Shtessel, S. Baev, and H. Biglari, “Unity power factor control in threephase AC/DC boost converter using sliding modes,” IEEE Trans. Industrial Electronics, vol. 55, no. 11, pp. 3874–3882, 2008. doi: 10.1109/TIE.2008.2003203

[104] 
M. Hamida, J. De Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Industrial Electronics, vol. 60, no. 2, pp. 739–748, 2013. doi: 10.1109/TIE.2012.2206355

[105] 
G. Wang, T. Li, G. Zhang, X. Gui, and D. Xu, “Position estimation error reduction using recursiveleastsquare adaptive filter for modelbased sensorless interior permanentmagnet synchronous motor drives,” IEEE Trans. Industrial Electronics, vol. 61, no. 9, pp. 5115–5125, 2014. doi: 10.1109/TIE.2013.2264791

[106] 
M. Comanescu and L. Xu, “Slidingmode MRAS speed estimators for sensorless vector control of induction machine,” IEEE Trans. Industrial Electronics, vol. 53, no. 1, pp. 146–153, 2006. doi: 10.1109/TIE.2005.862303

[107] 
J. Li, L. Xu, and Z. Zhang, “An adaptive slidingmode observer for induction motor sensorless speed control,” IEEE Trans. Industry Applications, vol. 41, no. 4, pp. 1039–1046, 2005. doi: 10.1109/TIA.2005.851585

[108] 
G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drivesa review,” IEEE Trans. Industrial Electronics, vol. 67, no. 7, pp. 5830–5842, 2019.
