A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 3
Mar.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. N. Xia, Q. Li, R. Z. Song, and H. Modares, “Optimal synchronization control of heterogeneous asymmetric input-constrained unknown nonlinear MASs via reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 520–532, Mar. 2022. doi: 10.1109/JAS.2021.1004359
Citation: L. N. Xia, Q. Li, R. Z. Song, and H. Modares, “Optimal synchronization control of heterogeneous asymmetric input-constrained unknown nonlinear MASs via reinforcement learning,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 520–532, Mar. 2022. doi: 10.1109/JAS.2021.1004359

Optimal Synchronization Control of Heterogeneous Asymmetric Input-Constrained Unknown Nonlinear MASs via Reinforcement Learning

doi: 10.1109/JAS.2021.1004359
Funds:  This work was supported in part by the National Natural Science Foundation of China (61873300, 61722312), the Fundamental Research Funds for the Central Universities (FRF-MP-20-11), and Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing (Fundamental Research Funds for the Central Universities) (FRFIDRY-20-030)
More Information
  • The asymmetric input-constrained optimal synchronization problem of heterogeneous unknown nonlinear multiagent systems (MASs) is considered in the paper. Intuitively, a state-space transformation is performed such that satisfaction of symmetric input constraints for the transformed system guarantees satisfaction of asymmetric input constraints for the original system. Then, considering that the leader’s information is not available to every follower, a novel distributed observer is designed to estimate the leader’s state using only exchange of information among neighboring followers. After that, a network of augmented systems is constructed by combining observers and followers dynamics. A nonquadratic cost function is then leveraged for each augmented system (agent) for which its optimization satisfies input constraints and its corresponding constrained Hamilton-Jacobi-Bellman (HJB) equation is solved in a data-based fashion. More specifically, a data-based off-policy reinforcement learning (RL) algorithm is presented to learn the solution to the constrained HJB equation without requiring the complete knowledge of the agents’ dynamics. Convergence of the improved RL algorithm to the solution to the constrained HJB equation is also demonstrated. Finally, the correctness and validity of the theoretical results are demonstrated by a simulation example.

     

  • loading
  • [1]
    S. R. Oh and S. K. Agrawal, “The feasible workspace analysis of a set point control for a cable-suspended robot with input constraints and disturbances,” IEEE Trans. Control Syst. Technol., vol. 14, no. 4, pp. 735–742, Jul. 2006. doi: 10.1109/TCST.2006.872515
    [2]
    R. W. Beard, J. Ferrin, and J. Humpherys, “Fixed wing UAV path following in wind with input constraints,” IEEE Trans. Control Syst. Technol., vol. 22, no. 6, pp. 2103–2117, Nov. 2014. doi: 10.1109/TCST.2014.2303787
    [3]
    F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. London, UK: Springer-Verlag, 2013.
    [4]
    R. Z. Song and L. Zhu, “Optimal fixed-point tracking control for discrete-time nonlinear systems via ADP,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 3, pp. 657–666, May 2019. doi: 10.1109/JAS.2019.1911453
    [5]
    Y. L. Yang, H. Modares, D. C. Wunsch, and Y. X. Yin, “Leader-follower output synchronization of linear heterogeneous systems with active leader using reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2139–2153, Jun. 2018. doi: 10.1109/TNNLS.2018.2803059
    [6]
    M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,” Automatica, vol. 41, no. 5, pp. 779–791, 2005. doi: 10.1016/j.automatica.2004.11.034
    [7]
    H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1513–1525, Oct. 2013. doi: 10.1109/TNNLS.2013.2276571
    [8]
    Y. H. Zhu, D. B. Zhao, H. B. He, and J. H. Ji, “Event-triggered optimal control for partially unknown constrained-input systems via adaptive dynamic programming,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 4101–4109, May 2017. doi: 10.1109/TIE.2016.2597763
    [9]
    X. X. Guo, W. S. Yan, and R. X. Cui, “Reinforcement learning-based nearly optimal control for constrained-input partially unknown systems using differentiator,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4713–4725, Nov. 2020. doi: 10.1109/TNNLS.2019.2957287
    [10]
    X. Yuan, L. Dong, and C. Y. Sun, “Solver-critic: A reinforcement learning method for discrete-time-constrained-input systems,” IEEE Trans. Cybern., to be published. DOI: 10.1109/TCYB.2020.2978088
    [11]
    J. L. Du, X. Hu, and Y. Q. Sun, “Adaptive robust nonlinear control design for course tracking of ships subject to external disturbances and input saturation,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 50, no. 1, pp. 193–202, Jan. 2020. doi: 10.1109/TSMC.2017.2761805
    [12]
    H. G. Zhang, G. Y. Xiao, Y. Liu, and L. Liu, “Value iteration-based H controller design for continuous-time nonlinear systems subject to input constraints,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 50, no. 11, pp. 3986–3995, Nov. 2020. doi: 10.1109/TSMC.2018.2853091
    [13]
    X. L. Wang, D. R. Ding, H. L. Dong, and X. M. Zhang, “Neural-network-based control for discrete-time nonlinear systems with input saturation under stochastic communication protocol,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 766–778, Apr. 2021. doi: 10.1109/JAS.2021.1003922
    [14]
    W. W. Bai, Q. Zhou, T. S. Li, and H. Y. Li, “Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3433–3443, Aug. 2020. doi: 10.1109/TCYB.2019.2921057
    [15]
    L. Wang, H. J. Gong, and C. S. Liu, “Disturbance observer-based adaptive fault-tolerant dynamic surface control of nonlinear system with asymmetric input saturation,” Int. J. Control Autom. Syst., vol. 17, no. 3, pp. 617–629, Mar. 2019. doi: 10.1007/s12555-018-0099-5
    [16]
    L. H. Kong, W. He, Y. T. Dong, L. Cheng, C. G. Yang, and Z. J. Li, “Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 51, no. 3, pp. 1735–1746, Mar. 2021.
    [17]
    X. Yang and B. Zhao, “Optimal neuro-control strategy for nonlinear systems with asymmetric input constraints,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 575–583, Mar. 2020. doi: 10.1109/JAS.2020.1003063
    [18]
    W. Zhou, H. C. Liu, H. B. He, J. Yi, and T. F. Li, “Neuro-optimal tracking control for continuous stirred tank reactor with input constraints,” IEEE Trans. Ind. Inform., vol. 15, no. 8, pp. 4516–4524, Aug. 2019. doi: 10.1109/TII.2018.2884214
    [19]
    M. T. Cao, F. Xiao, and L. Wang, “Event-based second-order consensus control for multi-agent systems via synchronous periodic event detection,” IEEE Trans. Automat. Control, vol. 60, no. 9, pp. 2452–2457, Sep. 2015. doi: 10.1109/TAC.2015.2390553
    [20]
    J. Liu, Y. L. Zhang, Y. Yu, and C. Y. Sun, “Fixed-time leader-follower consensus of networked nonlinear systems via event/self-triggered control,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 5029–5037, Nov. 2020. doi: 10.1109/TNNLS.2019.2957069
    [21]
    A. Shariati and M. Tavakoli, “A descriptor approach to robust leader-following output consensus of uncertain multi-agent systems with delay,” IEEE Trans. Automat. Control, vol. 62, no. 10, pp. 5310–5317, Oct. 2017. doi: 10.1109/TAC.2016.2643444
    [22]
    Z. Q. Zuo, J. Zhang, and Y. J. Wang, “Adaptive fault-tolerant tracking control for linear and lipschitz nonlinear multi-agent systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3923–3931, Jun. 2015.
    [23]
    H. Modares, S. P. Nageshrao, G. A. D. Lopes, R. Babuška, and F. L. Lewis, “Optimal model-free output synchronization of heterogeneous systems using off-policy reinforcement learning,” Automatica, vol. 71, pp. 334–341, Sep. 2016. doi: 10.1016/j.automatica.2016.05.017
    [24]
    Z. T. Li, L. X. Gao, W. H. Chen, and Y. Xu, “Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 1, pp. 292–300, Jan. 2020. doi: 10.1109/JAS.2019.1911858
    [25]
    G. H. Wen, Y. Zhao, Z. S. Duan, W. W. Yu, and G. R. Chen, “Containment of higher-order multi-leader multi-agent systems: A dynamic output approach,” IEEE Trans. Automat. Control, vol. 61, no. 4, pp. 1135–1140, Apr. 2016. doi: 10.1109/TAC.2015.2465071
    [26]
    H. Z. Xiao, Z. J. Li, and C. L. P. Chen, “Formation control of leader–follower mobile robots’ systems using model predictive control based on neural-dynamic optimization,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5752–5762, Sep. 2016. doi: 10.1109/TIE.2016.2542788
    [27]
    G. X. Wen, C. L. P. Chen, and B. Li, “Optimized formation control using simplified reinforcement learning for a class of multiagent systems with unknown dynamics,” IEEE Trans. Ind. Electron., vol. 67, no. 9, pp. 7879–7888, Sep. 2020. doi: 10.1109/TIE.2019.2946545
    [28]
    J. J. Fu, G. H. Wen, W. W. Yu, T. W. Huang, and X. H. Yu, “Consensus of second-order multiagent systems with both velocity and input constraints,” IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7946–7955, Oct. 2019. doi: 10.1109/TIE.2018.2879292
    [29]
    X. Li, C. C. Li, and Y. K. Yang, “Heterogeneous linear multi-agent consensus with nonconvex input constraints and switching graphs,” Inform. Sci., vol. 501, pp. 397–405, Oct. 2019. doi: 10.1016/j.ins.2019.06.013
    [30]
    R. P. Zou, J. Sun, J. L. Sun, T. Long, and A. L. Wei, “Leader-following constrained distributed adaptive dynamic programming design for multiagent systems,” in Proc. Chinese Automation Congress (CAC), Hangzhou, China, 2019, pp. 5345–5349.
    [31]
    H. Sun, Y. G. Liu, X. L. Niu, and H. J. Liang, “Optimal leader-following consensus of nonlinear heterogeneous multi-agent systems with input constraints,” in Proc. 37th Chinese Control Conf. (CCC), Wuhan, China, 2018, pp. 7130–7135.
    [32]
    M. Imani and S. F. Ghoreishi, “Optimal finite-horizon perturbation policy for inference of gene regulatory networks,” IEEE Intell. Syst., vol. 36, no. 1, pp. 54–63, Jan.-Feb. 2021. doi: 10.1109/MIS.2020.3017155
    [33]
    Z. C. Cao, Q. Xiao, R. Huang, and M. C. Zhou, “Robust neuro-optimal control of underactuated snake robots with experience replay,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1, pp. 208–217, Jan. 2018. doi: 10.1109/TNNLS.2017.2768820
    [34]
    H. G. Zhang, C. B. Qin, B. Jiang, and Y. H. Luo, “Online adaptive policy learning algorithm for H state feedback control of unknown affine nonlinear discrete-time systems,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2706–2718, Dec. 2014. doi: 10.1109/TCYB.2014.2313915
    [35]
    D. R. Liu, Y. C. Xu, Q. L. Wei, and X. L. Liu, “Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 36–46, Jan. 2018. doi: 10.1109/JAS.2017.7510739
    [36]
    Q. L. Wei, D. R. Liu, Y. Liu, and R. Z. Song, “Optimal constrained self-learning battery sequential management in microgrid via adaptive dynamic programming,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 2, pp. 168–176, Apr. 2017. doi: 10.1109/JAS.2016.7510262
    [37]
    M. Imani and U. M. Braga-Neto, “Control of gene regulatory networks using bayesian inverse reinforcement learning,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 16, no. 4, pp. 1250–1261, Jul.-Aug. 2019. doi: 10.1109/TCBB.2018.2830357
    [38]
    H. Y. Li, Y. Wu, and M. Chen, “Adaptive fault-tolerant tracking control for discrete-time multiagent systems via reinforcement learning algorithm,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1163–1174, Mar. 2021. doi: 10.1109/TCYB.2020.2982168
    [39]
    M. Imani and S. F. Ghoreishi, “Scalable inverse reinforcement learning through multifidelity Bayesian optimization,” IEEE Trans. Neural Netw. Learn. Syst., to be published. DOI: 10.1109/TNNLS.2021.3051012
    [40]
    W. W. Bai, T. S. Li, and S. C. Tong, “NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4573–4584, Nov. 2020. doi: 10.1109/TCYB.2020.2963849
    [41]
    M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Policy iterations on the Hamilton–Jacobi–Isaacs equation for H state feedback control with input saturation,” IEEE Trans. Automat. Control, vol. 51, no. 12, pp. 1989–1995, Dec. 2006. doi: 10.1109/TAC.2006.884959
    [42]
    C. X. Mu, K. Wang, and C. Y. Sun, “Policy-iteration-based learning for nonlinear player game systems with constrained inputs,” IEEE Trans. Systems,Man,and Cybernetics:Systems, vol. 51, no. 10, pp. 6488–6502, Oct. 2021. doi: 10.1109/TSMC.2019.2962629
    [43]
    H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Integral reinforcement learning and experience replay for adaptive optimal control of partially-unknown constrained-input continuous-time systems,” Automatica, vol. 50, no. 1, pp. 193–202, Jan. 2014. doi: 10.1016/j.automatica.2013.09.043
    [44]
    H. G. Zhang, K. Zhang, G. Y. Xiao, and H. Jiang, “Robust optimal control scheme for unknown constrained-input nonlinear systems via a plug-n-play event-sampled critic-only algorithm,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 50, no. 9, pp. 3169–3180, Sep. 2020. doi: 10.1109/TSMC.2018.2889377
    [45]
    B. Kiumarsi and F. L. Lewis, “Actor–critic-based optimal tracking for partially unknown nonlinear discrete-time systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 140–151, Jan. 2015. doi: 10.1109/TNNLS.2014.2358227
    [46]
    R. Z. Song, F. L. Lewis, Q. L. Wei, and H. G. Zhang, “Off-policy actor-critic structure for optimal control of unknown systems with disturbances,” IEEE Trans. Cybern., vol. 46, no. 5, pp. 1041–1050, May 2016. doi: 10.1109/TCYB.2015.2421338
    [47]
    G. X. Wen, C. L. P. Chen, S. S. Ge, H. L. Yang, and X. G. Liu, “Optimized adaptive nonlinear tracking control using actor–critic reinforcement learning strategy,” IEEE Trans. Ind. Inform., vol. 15, no. 9, pp. 4969–4977, Sep. 2019. doi: 10.1109/TII.2019.2894282
    [48]
    W. Zhu and Z. P. Jiang, “Event-based leader-following consensus of multi-agent systems with input time delay,” IEEE Trans. Automat. Control, vol. 60, no. 5, pp. 1362–1367, May 2015. doi: 10.1109/TAC.2014.2357131
    [49]
    W. Zhu, W. J. Cao, and Z. P. Jiang, “Distributed event-triggered formation control of multiagent systems via complex-valued Laplacian,” IEEE Trans. Cybern., vol. 51, no. 4, pp. 2178–2187, Apr. 2021. doi: 10.1109/TCYB.2019.2908190
    [50]
    H. Modares, B. Kiumarsi, F. L. Lewis, F. Ferrese, and A. Davoudi, “Resilient and robust synchronization of multiagent systems under attacks on sensors and actuators,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1240–1250, Mar. 2020. doi: 10.1109/TCYB.2019.2903411
    [51]
    Z. K. Li, G. H. Wen, Z. S. Duan, and W. Ren, “Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs,” IEEE Trans. Automat. Control, vol. 60, no. 4, pp. 1152–1157, Apr. 2015. doi: 10.1109/TAC.2014.2350391
    [52]
    H. Modares, F. L. Lewis, and Z. P. Jiang, “H tracking control of completely unknown continuous-time systems via off-policy reinforcement learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2550–2562, Oct. 2015. doi: 10.1109/TNNLS.2015.2441749
    [53]
    H. G. Zhang, Y. L. Liang, H. G. Su, and C. Liu, “Event-driven guaranteed cost control design for nonlinear systems with actuator faults via reinforcement learning algorithm,” IEEE Trans. Syst. Man Cybern.:Syst., vol. 50, no. 11, pp. 4135–4150, Nov. 2020. doi: 10.1109/TSMC.2019.2946857
    [54]
    H. W. Lin, B. Zhao, D. R. Liu, and C. Alippi, “Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 4, pp. 954–964, Jul. 2020. doi: 10.1109/JAS.2020.1003225
    [55]
    H. Wang and M. Li, “Model-free reinforcement learning for fully cooperative consensus problem of nonlinear multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., to be published. DOI: 10.1109/TNNLS.2020.3042508
    [56]
    H. Modares, F. L. Lewis, W. Kang, and A. Davoudi, “Optimal synchronization of heterogeneous nonlinear systems with unknown dynamics,” IEEE Trans. Automat. Control, vol. 63, no. 1, pp. 117–131, Jan. 2018. doi: 10.1109/TAC.2017.2713339
    [57]
    M. Green and D. J. N. Limebeer, Linear Robust Control. Englewood Cliffs, NJ: Prentice-Hall, 1995.
    [58]
    D. R. Liu and Q. L. Wei, “Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014. doi: 10.1109/TNNLS.2013.2281663

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (1197) PDF downloads(155) Cited by()

    Highlights

    • A state space transformation method is presented to solve the optimal synchronization control problem for heterogeneous nonlinear MASs with asymmetric input constraints. In addition, it implies that the symmetric input constraints in relevant work can be regarded as a special case of our research work
    • An improved data-based RL algorithm is employed to learn the solution to the non-quadratic HJB equations without requiring system’s dynamics information
    • To implement this algorithm, the critic NN and the actor factor NN are established respectively to estimate the cost function and the control policy for agents, such that input constraint is encoded into the framework of the proposed algorithm

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return