A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 5
May  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. C. Tong, J. G. Liu, "Review of Research and Development of Supernumerary Robotic Limbs," IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 929-952, May. 2021. doi: 10.1109/JAS.2021.1003961
Citation: Y. C. Tong, J. G. Liu, "Review of Research and Development of Supernumerary Robotic Limbs," IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 929-952, May. 2021. doi: 10.1109/JAS.2021.1003961

Review of Research and Development of Supernumerary Robotic Limbs

doi: 10.1109/JAS.2021.1003961
Funds:  This work was supported in part by the National Key R&D Program of China (2018YFB1304600), the Natural Science Foundation of China (51775541), CAS Interdisciplinary Innovation Team (JCTD-2018-11)
More Information
  • Supernumerary robotic limbs (SRLs) are a new type of wearable human auxiliary equipment, which is currently a hot research topic in the world. SRLs have broad applications in many fields, and will provide a reference and technical support for the realization of human-robot collaboration and integration, while playing an important role in improving social security and public services. In this paper, representative SRLs are summarized from the aspects of related literature analysis, research status, ontology structure design, control and driving, sensing and perception, and application fields. This paper also analyzes and summarizes the current technical challenges faced by SRLs, and reviews development progress and key technologies, thus giving a prospect of future technical development trends.

     

  • loading
  • [1]
    B. Chen, H. Ma, L. Y. Qin, F. Gao, K. M. Chan, S. W. Law, L. Qin, and W. H. Liao, “Recent developments and challenges of lower extremity exoskeletons,” J. Orthop. Translat., vol. 5, pp. 26–37, Apr. 2016. doi: 10.1016/j.jot.2015.09.007
    [2]
    T. C. Haupt and K. Pillay, “Investigating the true costs of construction accidents,” J. Eng. Des. Technol., vol. 14, no. 2, pp. 373–419, May 2016.
    [3]
    F. Parietti and H. Asada, “Supernumerary robotic limbs for human body support,” IEEE Trans. Robot., vol. 32, no. 2, pp. 301–311, Apr. 2016. doi: 10.1109/TRO.2016.2520486
    [4]
    F. Parietti, K. C. Chan, B. Hunter, and H. H. Asada, “Design and control of supernumerary robotic limbs for balance augmentation,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 5010–5017.
    [5]
    F. Parietti, K. Chan, and H. H. Asada, “Bracing the human body with supernumerary robotic limbs for physical assistance and load reduction,” in Proc. IEEE Int. Conf. Robotics and Automation, Hong Kong, China, 2014, pp. 141–148.
    [6]
    J. P. Leigh, “Economic burden of occupational injury and illness in the United States,” Milbank Q., vol. 89, no. 4, pp. 728–772, Dec. 2011. doi: 10.1111/j.1468-0009.2011.00648.x
    [7]
    Z. Lovrenovic and M. Doumit, “Review and analysis of recent development of lower extremity exoskeletons for walking assist,” in Proc. IEEE EMBS Int. Student Conf., Ottawa, ON, Canada, 2016, pp. 1–4.
    [8]
    H. Kawamoto and Y. Sankai, “Power assist system HAL-3 for gait disorder person,” in Proc. 8th Int. Conf. Computers Helping People with Special Needs, Linz, Austria, 2002, pp. 196–203.
    [9]
    H. Kazerooni, J. L. Racine, L. H. Huang, and R. Steger, “On the control of the Berkeley lower extremity exoskeleton (BLEEX),” in Proc. IEEE Int. Conf. Robotics and Automation, Barcelona, Spain, 2005, pp. 4353–4360.
    [10]
    H. Kazerooni, R. Steger, and L. H. Huang, “Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX),” Int. J. Rob. Res., vol. 25, no. 5-6, pp. 561–573, May 2006.
    [11]
    H. Kawamoto and Y. Sankai, “Comfortable power assist control method for walking aid by HAL-3,” in Proc. IEEE Int. Conf. Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 2002, pp. 447–452.
    [12]
    S. A. Elprama, J. T. A. Vannieuwenhuyze, S. De Bock, B. Vanderborght, K. De Pauw, R. Meeusen, and A. Jacobs, “Social processes: What determines industrial workers’ intention to use exoskeletons?” Hum. Factors, vol. 62, no. 3, pp. 337–350, May 2020. doi: 10.1177/0018720819889534
    [13]
    K. Huysamen, V. Power, and L. O’Sullivan, “Kinematic and kinetic functional requirements for industrial exoskeletons for lifting tasks and overhead lifting,” Ergonomics, vol. 63, no. 7, pp. 818–830, May 2020. doi: 10.1080/00140139.2020.1759698
    [14]
    M. Hao, J. W. Zhang, K. Chen, and C. L. Fu, “Design and basic control of extra robotic legs for dynamic walking assistance,” in Proc. IEEE Int. Conf. Advanced Robotics and Its Social Impacts, Beijing, China, 2019, pp. 246–250.
    [15]
    G. Kenneally, A. De, and D. E. Koditschek, “Design principles for a family of direct-drive legged robots,” IEEE Rob. Autom. Lett., vol. 1, no. 2, pp. 900–907, Jul. 2016. doi: 10.1109/LRA.2016.2528294
    [16]
    F. Parietti and H. H. Asada, “Independent, voluntary control of extra robotic limbs,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, 2017, pp. 5954–5961.
    [17]
    P. M. Wensing, A. Wang, S. Seok, D. Otten, J. Lang, and S. Kim, “Proprioceptive actuator design in the MIT cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots,” IEEE Trans. Rob., vol. 33, no. 3, pp. 509–522, Jun. 2017. doi: 10.1109/TRO.2016.2640183
    [18]
    B. Llorens-Bonilla, F. Parietti, and H. H. Asada, “Demonstration-based control of supernumerary robotic limbs,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura, Portugal, 2012, pp. 3936–3942.
    [19]
    C. Davenport, F. Parietti, and H. H. Asada, “Design and biomechanical analysis of supernumerary robotic limbs,” in Proc. ASME 5th Annu. Dynamic Systems and Control Division Conf., JSME 11th Motion and Vibration Conf., Florida, USA, 2013, pp. 787–793.
    [20]
    D. A. Kurek and H. H. Asada, “The MantisBot: Design and impedance control of supernumerary robotic limbs for near-ground work,” in Proc. IEEE Int. Conf. Robotics and Automation, Singapore, 2017, pp. 5942–5947.
    [21]
    A. S. Ciullo, J. M. Veerbeek, E. Temperli, A. R. Luft, F. J. Tonis, C. J. W. Haarman, A. Ajoudani, M. G. Catalano, J. P. O. Held, and A. Bicchi, “A novel soft robotic supernumerary hand for severely affected stroke patients,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 5, pp. 1168–1177, May 2020. doi: 10.1109/TNSRE.2020.2984717
    [22]
    G. Gourmelen, A. Verhulst, B. Navarro, T. Sasaki, G. Gowrishankar, and M. Inami, “Co-limbs: An intuitive collaborative control for wearable robotic arms,” in Proc. SIGGRAPH Asia 2019 Emerging Technologies, Australia, pp. 9–10.
    [23]
    J. Guggenheim, R. Hoffman, H. J. Song, and H. H. Asada, “Leveraging the human operator in the design and control of supernumerary robotic limbs,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp. 2177–2184, Apr. 2020. doi: 10.1109/LRA.2020.2970948
    [24]
    Y. P. Huang, E. Burdet, L. Cao, P. T. Phan, A. M. H. Tiong, and S. J. Phee, “A subject-specific four-degree-of-freedom foot interface to control a surgical robot,” IEEE-ASME Trans. Mech., vol. 25, no. 2, pp. 951–963, Apr. 2020. doi: 10.1109/TMECH.2020.2964295
    [25]
    C. Véronneau, J. Denis, L. P. Lebel, M. Denninger, V. Blanchard, A. Girard, and J. S. Plante, “Multifunctional remotely actuated 3-DOF supernumerary robotic arm based on magnetorheological clutches and hydrostatic transmission lines,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp. 2546–2553, Apr. 2020. doi: 10.1109/LRA.2020.2967327
    [26]
    K. C. Armel and V. S. Ramachandran, “Projecting sensations to external objects: Evidence from skin conductance response,” Proc. Roy. Soc. B-Biol. Sci., vol. 270, no. 1523, pp. 1499–1506, Jul. 2003. doi: 10.1098/rspb.2003.2364
    [27]
    M. Botvinick and J. Cohen, “Rubber hands ‘feel’ touch that eyes see,” Nature, vol. 391, no. 6669, Article No. 756, Feb. 1998. doi: 10.1038/35784
    [28]
    A. Guterstam, V. I. Petkova, and H. H. Ehrsson, “The illusion of owning a third arm,” PLoS ONE, vol. 6, no. 2, Article No. e17208, Feb. 2011. doi: 10.1371/journal.pone.0017208
    [29]
    P. M. Jenkinson, P. Haggard, N. C. Ferreira, and A. Fotopoulou, “Body ownership and attention in the mirror: Insights from somatoparaphrenia and the rubber hand illusion,” Neuropsychologia, vol. 51, no. 8, pp. 1453–1462, Jul. 2013. doi: 10.1016/j.neuropsychologia.2013.03.029
    [30]
    H. W. Jing, Y. H. Zhu, S. K. Zhao, Q. H. Zhang, and J. Zhao, “Research status and development trend of supernumerary robotic limbs,” Journal of Mechanical Engineering, vol. 26, no. 7, pp. 1–9, May 2020.
    [31]
    R. Bogue, “Exoskeletons and robotic prosthetics: A review of recent developments,” Ind. Rob., vol. 36, no. 5, pp. 421–427, Aug. 2009.
    [32]
    A. M. Dollar and H. Herr, “Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art,” IEEE Trans. Rob., vol. 24, no. 1, pp. 144–158, Feb. 2008. doi: 10.1109/TRO.2008.915453
    [33]
    D. J. Gonzalez and H. H. Asada, “Design of extra robotic legs for augmenting human payload capabilities by exploiting singularity and torque redistribution,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Madrid, Spain, 2018, pp. 4348–4354.
    [34]
    J. Hope and A. McDaid, “Development of wearable wrist and forearm exoskeleton with shape memory alloy actuators,” J. Intell. Rob. Syst., vol. 86, no. 3–4, pp. 397–417, Jun. 2017. doi: 10.1007/s10846-016-0456-7
    [35]
    P. N. Kooren, A. G. Dunning, M. M. H. P. Janssen, J. Lobo-Prat, B. F. J. M. Koopman, M. I. Paalman, I. J. M. de Groot, and J. L. Herder, “Design and pilot validation of a-gear: A novel wearable dynamic arm support,” J. Neuroeng. Rehabil., vol. 12, Article No. 83, Sept. 2015. doi: 10.1186/s12984-015-0072-y
    [36]
    F. Parietti and H. H. Asada, “Dynamic analysis and state estimation for wearable robotic limbs subject to human-induced disturbances,” in Proc. IEEE Int. Conf. Robotics and Automation, Karlsruhe, Germany, 2013, pp. 3880–3887.
    [37]
    W. J. Wang, Y. Liu, Z. C. Li, Z. Wang, F. He, D. Ming, and D. P. Yang, “Building multi-modal sensory feedback pathways for SRL with the aim of sensory enhancement via BCI,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Dali, China, 2019, pp. 2439–2444.
    [38]
    F. Parietti and H. H. Asada, “Supernumerary robotic limbs for aircraft fuselage assembly: Body stabilization and guidance by bracing,” in Proc. IEEE Int. Conf. Robotics and Automation, Hong Kong, China, 2014, pp. 1176–1183.
    [39]
    H. Shikida, S. M. Noel, and Y. Hasegawa, “Acquisition of new body representation about extra robotic thumb by use of vestigial muscles,” in Proc. IEEE Int. Conf. Cyborg and Bionic Systems, Beijing, China, 2017, pp. 211–214.
    [40]
    D. Gopinath and G. Weinberg, “A generative physical model approach for enhancing the stroke palette for robotic drummers,” Rob. Autonom. Syst., vol. 86, pp. 207–215, Dec. 2016. doi: 10.1016/j.robot.2016.08.020
    [41]
    I. Hussain, G. Salvietti, L. Meli, C. Pacchierotti, D. Cioncoloni, S. Rossi, and D. Prattichizzo, “Using the robotic sixth finger and vibrotactile feedback for grasp compensation in chronic stroke patients,” in Proc. IEEE Int. Conf. Rehabilitation Robotics, Singapore, 2015, pp. 67–72.
    [42]
    I. Hussain, G. Salvietti, G. Sagnoletti, M. Malvezzi, D. Cioncoloni, S. Rossi, and D. Prattichizzo, “A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation,” Rob. Autonom. Syst., vol. 93, pp. 1–12, Jul. 2017. doi: 10.1016/j.robot.2017.03.015
    [43]
    I. Hussain, G. Spagnoletti, G. Salvietti, and D. Prattichizzo, “Toward wearable supernumerary robotic fingers to compensate missing grasping abilities in hemiparetic upper limb,” Int. J. Rob. Res., vol. 36, no. 13-14, pp. 1414–1436, Dec. 2017. doi: 10.1177/0278364917712433
    [44]
    I. Hussain, M. Anwar, Z. Iqbal, R. Muthusamy, M. Malvezzi, L. Seneviratne, D. M. Gan, F. Renda, and D. Prattichizzo, “Design and prototype of supernumerary robotic finger (SRF) inspired by fin ray (R) effect for patients suffering from sensorimotor hand impairment,” in Proc. 2nd IEEE Int. Conf. Soft Robotics, Seoul, Korea, 2019, pp. 398–403.
    [45]
    I. Hussain, L. Meli, C. Pacchierotti, G. Salvietti, and D. Prattichizzo, “Vibrotactile haptic feedback for intuitive control of robotic extra fingers,” in Proc. 10th IEEE World Haptics Conf., Evanston, IL, USA, 2015, pp. 394–399.
    [46]
    R. Khodambashi, G. Weinberg, W. Singhose, S. Rishmawi, V. Murali, and E. Kim, “User oriented assessment of vibration suppression by command shaping in a supernumerary wearable robotic arm,” in Proc. IEEE-RAS 16th Int. Conf. Humanoid Robots, Cancun, Mexico, 2016, pp. 1067–1072.
    [47]
    N. S. Meraz, H. Shikida, and Y. Hasegawa, “Auricularis muscles based control interface for robotic extra thumb,” in Proc. Int. Symp. Micro-Nanomechatronics and Human Science, Nagoya, Japan, 2017, pp. 1–3.
    [48]
    D. Prattichizzo, M. Malvezzi, I. Hussain, and G. Salvietti, “The sixth-finger: A modular extra-finger to enhance human hand capabilities,” in Proc. 23rd IEEE Int. Symp. Robot and Human Interactive Communication, Edinburgh, UK, 2014, pp. 993–998.
    [49]
    G. Salvietti, I. Hussain, D. Cioncoloni, S. Taddei, S. Rossi, and D. Prattichizzo, “Compensating hand function in chronic stroke patients through the robotic sixth finger,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 2, pp. 142–150, Feb. 2017. doi: 10.1109/TNSRE.2016.2529684
    [50]
    T. Sasaki, M. H. D. Y. Saraiji, C. L. Fernando, K. Minamizawa, and M. Inami, “MetaLimbs: Metamorphosis for multiple arms interaction using artificial limbs,” in ACM SIGGRAPH 2017 Posters, California, pp. 1–2.
    [51]
    T. Sasaki, M. Y. Saraiji, C. L. Fernando, K. Minamizawa, and M. Inami, “MetaLimbs: Multiple arms interaction metamorphism,” in ACM SIGGRAPH 2017 Emerging Technologies, California, pp. 1–2.
    [52]
    H. Shikida, S. M. Noel, and Y. Hasegawa, “Somatosensory feedback improves operability of extra robotic thumb controlled by vestigial muscles,” in Proc. Int. Symp. Micro-Nanomechatronics and Human Science, Nagoya, Japan, 2017, pp. 1–4.
    [53]
    F. Y. Wu and H. H. Asada, “Decoupled motion control of wearable robot for rejecting human induced disturbances,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, QLD, Australia, 2018, pp. 4103–4110.
    [54]
    M. Sobajima, Y. Sato, X. F. Wang, and Y. Hasegawa, “Improvement of operability of extra robotic thumb using tactile feedback by electrical stimulation,” in Proc. Int. Symp. Micro-NanoMechatronics and Human Science, Nagoya, Japan, 2015, pp. 1–3.
    [55]
    Y. N. Zhu, H. Shikida, T. Aoyama, and Y. Hasegawa, “Evaluating shifted body representation and modified body schema using extra robotic thumb,” in Proc. IEEE Int. Conf. Cyborg and Bionic Systems, Shenzhen, China, 2018, pp. 282–285.
    [56]
    J. Chen, Z. C. Liang, Y. H. Zhu, C. Liu, L. Zhang, L. N. Hao, and J. Zhao, “Towards the exploitation of physical compliance in segmented and electrically actuated robotic legs: A review focused on elastic mechanisms,” Sensors, vol. 19, no. 24, Article No. 5351, Dec. 2019.
    [57]
    Q. Q. Fang, G. Li, T. Xu, J. Zhao, H. G. Cai, and Y. H. Zhu, “A simplified inverse dynamics modelling method for a novel rehabilitation exoskeleton with parallel joints and its application to trajectory tracking,” Math. Probl. Eng., vol. 2019, Article No. 4602035, Dec. 2019.
    [58]
    B. Llorens-Bonilla and H. H. Asada, “A robot on the shoulder: Coordinated human-wearable robot control using coloured petri nets and partial least squares predictions,” in Proc. IEEE Int. Conf. Robotics and Automation, Hong Kong, China, 2014, pp. 119–125.
    [59]
    X. Sui, H. G. Cai, D. Y. Bie, Y. Zhang, J. Zhao, and Y. H. Zhu, “Automatic generation of locomotion patterns for soft modular reconfigurable robots,” Appl. Sci., vol. 10, no. 1, Article No. 294, Jan. 2020.
    [60]
    T. S. Wang, Y. H. Zhu, T. J. Zheng, D. B. Sui, S. K. Zhao, and J. Zhao, “PALExo: A parallel actuated lower limb exoskeleton for high-load carrying,” IEEE Access, vol. 8, pp. 67250–67262, Apr. 2020. doi: 10.1109/ACCESS.2020.2986357
    [61]
    Y. H. Wu, Z. Wu, and C. L. Fu, “Continuous arm gesture recognition based on natural features and logistic regression,” IEEE Sens. J., vol. 18, no. 19, pp. 8143–8153, Oct. 2018. doi: 10.1109/JSEN.2018.2863044
    [62]
    Q. H. Zhang, Y. H. Zhu, X. Zhao, Y. Q. Yang, H. W. Jing, G. A. Zhang, and J. Zhao, “Design of reconfigurable supernumerary robotic limb based on differential actuated joints,” Int. Schol. Sci. Res. Innov., vol. 14, no. 4, pp. 115–122, 2020.
    [63]
    Z. W. Zhang, J. Z. Fan, H. Z. Jin, T. J. Zheng, S. K. Zhao, S. Ma, J. Zhao, and Y. H. Zhu, “Active knee joint exoskeleton for stair ascent augmentation,” Sci. China Inform. Sci., vol. 64, no. 3, Article No. 139204, Mar. 2021. doi: 10.1007/s11432-018-9767-6
    [64]
    V. Vatsal and G. Hoffman, “Wearing your arm on your sleeve: Studying usage contexts for a wearable robotic forearm,” in Proc. 26th IEEE Int. Symp. Robot and Human Interactive Communication, Lisbon, Portugal, 2017, pp. 974–980.
    [65]
    D. J. Gonzalez and H. H. Asada, “Hybrid open-loop closed-loop control of coupled human-robot balance during assisted stance transition with extra robotic legs,” IEEE Rob. Autom. Lett., vol. 4, no. 2, pp. 1676–1683, Apr. 2019. doi: 10.1109/LRA.2019.2897177
    [66]
    Z. Bright and H. H. Asada, “Supernumerary robotic limbs for human augmentation in overhead assembly tasks,” in 2017 Robotics: Science and Systems, Cambridge MA, USA.
    [67]
    V. Vatsal and G. Hoffman, “Design and analysis of a wearable robotic forearm,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, QLD, Australia, 2018, pp. 5489–5496.
    [68]
    Y. Saraiji, T. Sasaki, K. Kunze, K. Minamizawa, and M. Inami, “MetaArms: Body remapping using feet-controlled artificial arms,” in Proc. 31st Annu. ACM Symp. User Interface Software and Technology, Berlin, Germany, 2018, pp. 65–74.
    [69]
    A. S. Ciullo, M. G. Catalano, A. Bicchi, and A. Ajoudani, “A supernumerary soft robotic hand-arm system for improving worker ergonomics,” in Wearable Robotics: Challenges and Trends, Pisa, Italy, 2019, pp. 520–524.
    [70]
    A. Kojima, H. Yamazoe, and J. H. Lee, “Practical-use oriented design for wearable robot arm,” in Intelligent Robotics and Applications, Tokyo, Japan, 2016, pp. 125–134.
    [71]
    S. M. Moon, C. Y. Shin, J. Huh, K. W. Oh, and D. Hong, “Window cleaning system with water circulation for building facade maintenance robot and its efficiency analysis,” Int. J. Precis. Eng. Manuf.-Green Technol., vol. 2, no. 1, pp. 65–72, Jan. 2015. doi: 10.1007/s40684-015-0009-8
    [72]
    C. Y. Shin, J. Bae, and D. Hong, “Ceiling work scenario based hardware design and control algorithm of supernumerary robotic limbs,” in Proc. 15th Int. Conf. Control, Automation and Systems, Busan, South Korea, 2015, pp. 1228–1230.
    [73]
    C. Y. Shin, S. M. Moon, J. H. Kwon, J. Huh, and D. Hong, “Force control of cleaning tool system for building wall maintenance robot on built-in guide rail,” in Proc. 31st ISARC, Sydney, Australia, 2014, pp. 157–162.
    [74]
    S. M. Yoon, S. M. Moon, C. Y. Shin, and D. Hong, “Cleaning process simulation for building facade maintenance robot with built-in guide rail,” in Proc. 6th Int. Asia Conf. Industrial Engineering and Management Innovation, Paris, 2016, pp. 657–667.
    [75]
    S. Srinivas, G. S. Virk, and U. Haider, “Multipurpose supernumerary robotic limbs for industrial and domestic applications,” in Proc. 20th Int. Conf. Methods and Models in Automation and Robotics, 2015, Miedzyzdroje, Poland, pp. 289–293.
    [76]
    X. Q. Liang, H. K. Yap, J. Guo, R. C. H. Yeow, Y. Sun, and C. K. Chui, “Design and characterization of a novel fabric-based robotic arm for future wearable robot application,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Macau, China, 2017, pp. 367–372.
    [77]
    P. H. Nguyen, I. I. B. Mohd, C. Sparks, F. L. Arellano, W. L. Zhang, and P. Polygerinos, “Fabric soft poly-limbs for physical assistance of daily living tasks,” in Proc. Int. Conf. Robotics and Automation, Montreal, QC, Canada, 2019, pp. 8429–8435.
    [78]
    P. H. Nguyen, C. Sparks, S. G. Nuthi, N. M. Vale, and P. Polygerinos, “Soft poly-limbs: Toward a new paradigm of mobile manipulation for daily living tasks,” Soft Rob., vol. 6, no. 1, pp. 38–53, Feb. 2019. doi: 10.1089/soro.2018.0065
    [79]
    P. H. Nguyen, S. Sridar, S. Amatya, C. M. Thalman, and P. Polygerinos, “Fabric-based soft grippers capable of selective distributed bending for assistance of daily living tasks,” in Proc. 2nd IEEE Int. Conf. Soft Robotics, Seoul, Korea, 2019, pp. 404–409.
    [80]
    M. Al-Sada, T. Höglund, M. Khamis, J. Urbani, and T. Nakajima, “Orochi: Investigating requirements and expectations for multipurpose daily used supernumerary robotic limbs,” in Proc. 10th Augmented Human Int. Conf., Reims, France, 2019, pp. 1–9.
    [81]
    I. Hussain, G. Spagnoletti, C. Pacchierotti, and D. Prattichizzo, “A wearable haptic ring for the control of extra robotic fingers,” in Haptic Interaction: Science, Engineering and Design, Singapore, 2018, pp. 323–325.
    [82]
    F. Y. Wu and H. H. Asada, ““Hold-and-manipulate” with a single hand being assisted by wearable extra fingers,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 6205–6212.
    [83]
    F. Y. Wu and H. Asada, “Supernumerary robotic fingers: An alternative upper-limb prosthesis,” in Proc. ASME 2014 Dynamic Systems and Control Conf., San Antonio, Texas, USA.
    [84]
    S. W. Leigh and P. Maes, “Body integrated programmable joints interface,” in Proc. CHI Conf. Human Factors in Computing Systems, San Jose, California, USA, 2016, pp. 6053–6057.
    [85]
    M. Malvezzi, Z. Iqbal, M. C. Valigi, M. Pozzi, D. Prattichizzo, and G. Salvietti, “Design of multiple wearable robotic extra fingers for human hand augmentation,” Robotics, vol. 8, no. 4, Article No. 102, Dec. 2019. doi: 10.3390/robotics8040102
    [86]
    J. Cunningham, A. Hapsari, P. Guilleminot, A. Shafti, and A. A. Faisal, “The supernumerary robotic 3rd thumb for skilled music tasks,” in Proc. 7th IEEE RAS/EMBS Int. Conf. Biomedical Robotics and Biomechatronics, Enschede, The Netherlands, 2018, pp. 665–670.
    [87]
    L. Tiziani, A. Hart, T. Cahoon, F. Y. Wu, H. H. Asada, and F. L. Hammond, “Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices,” Int. J. Rob. Res., vol. 36, no. 13–14, pp. 1391–1413, Dec. 2017. doi: 10.1177/0278364917714062
    [88]
    Y. H. Hu, S. W. Leigh, and P. Maes, “Hand development kit: Soft robotic fingers as prosthetic augmentation of the hand,” in Proc. Uist’17: Adjunct Publication of the 30th Annu. ACM Symp. User Interface Software and Technology, Québec City, QC, Canada, 2017, pp. 27–29.
    [89]
    S. Park, M. Fraser, L. M. Weber, C. Meeker, L. Bishop, D. Geller, J. Stein, and M. Ciocarlie, “User-driven functional movement training with a wearable hand robot after stroke,” IEEE Trans. Neural Syst. Rehabilit. Eng., vol. 28, no. 10, pp. 2265–2275, Oct. 2020. doi: 10.1109/TNSRE.2020.3021691
    [90]
    M. Bretan, D. Gopinath, P. Mullins, and G. Weinberg, A robotic prosthesis for an amputee drummer. 2016. arXiv preprint arXiv: 1612.04391
    [91]
    A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, smarter, softer: Next-generation wearable robots,” IEEE Rob. Autom. Mag., vol. 21, no. 4, pp. 22–33, Dec. 2014.
    [92]
    A. Schiele, “Ergonomics of exoskeletons: Objective performance metrics,” in Proc. World Haptics 2009: Joint Eurohaptics Conf. Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, pp. 103–108.
    [93]
    Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S. M. M. De Rossi, and C. Walsh, “Multi-joint actuation platform for lower extremity soft exosuits,” in Proc. IEEE Int. Conf. Robotics and Automation, Hong Kong, China, 2014, pp. 1327–1334.
    [94]
    Y. Ding, I. Galiana, A. T. Asbeck, S. M. M. De Rossi, J. Bae, T. R. T. Santos, V. L. de Araujo, S. Lee, K. G. Holt, and C. Walsh, “Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 2, pp. 119–130, Feb. 2017. doi: 10.1109/TNSRE.2016.2523250
    [95]
    B. T. Quinlivan, S. Lee, P. Malcolm, D. M. Rossi, M. Grimmer, C. Siviy, N. Karavas, D. Wagner, A. Asbeck, I. Galiana, and C. J. Walsh, “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit,” Sci. Rob., vol. 2, no. 2, Article No. eaah4416, Jan. 2017. doi: 10.1126/scirobotics.aah4416
    [96]
    A. T. Asbeck, K. Schmidt, I. Galiana, D. Wagner, and C. J. Walsh, “Multi-joint soft exosuit for gait assistance,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 6197–6204.
    [97]
    L. N. Awad, J. Bae, K. O'Donnell, S. M. M. De Rossi, K. Hendron, L. H. Sloot, P. Kudzia, S. Allen, K. G. Holt, T. D. Ellis, and C. J. Walsh, “A soft robotic exosuit improves walking in patients after stroke,” Sci. Transl. Med., vol. 9, no. 400, Article No. eaai9084, Jul. 2017. doi: 10.1126/scitranslmed.aai9084
    [98]
    S. Lee, N. Karavas, B. T. Quinlivan, D. LouiseRyan, D. Perry, A. Eckert-Erdheim, P. Murphy, T. G. Goldy, N. Menard, M. Athanassiu, J. Kim, G. Lee, I. Galiana, and C. J. Walsh, “Autonomous multi-joint soft exosuit for assistance with walking overground,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, QLD, Australia, 2018, pp. 2812–2819.
    [99]
    F. A. Panizzolo, I. Galiana, A. T. Asbeck, C. Siviy, K. Schmidt, K. G. Holt, and C. J. Walsh, “A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking,” J. Neuroeng. Rehabil., vol. 13, no. 1, Article No. 43, May 2016. doi: 10.1186/s12984-016-0150-9
    [100]
    S. J. Ball, I. E. Brown, and S. H. Scott, “A planar 3DOF robotic exoskeleton for rehabilitation and assessment,” in Proc. 29th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Lyon, France, 2007, pp. 4024–4027.
    [101]
    R. D. Bellman, M. A. Holgate, and T. G. Sugar, “SPARKy 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics,” in Proc. 2nd IEEE RAS & EMBS Int. Conf. Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 2008, pp. 511–516.
    [102]
    E. Rocon, J. M. Belda-Lois, A. F. Ruiz, M. Manto, J. C. Moreno, and J. L. Pons, “Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 3, pp. 367–378, Sept. 2007. doi: 10.1109/TNSRE.2007.903917
    [103]
    M. Yoshikawa, R. Sato, T. Higashihara, T. Ogasawara, and N. Kawashima, “Rehand: Realistic electric prosthetic hand created with a 3D printer,” in Proc. 37th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015, pp. 2470–2473.
    [104]
    I. Galiana, F. L. Hammond, R. D. Howe, and M. B. Popovic, “Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura, Portugal, 2012, pp. 317–322.
    [105]
    Y. L. Park, B. R. Chen, N. O. Pérez-Arancibia, D. Young, L. Stirling, R. J. Wood, E. C. Goldfield, and R. Nagpal, “Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation,” Bioinspir. Biomim., vol. 9, no. 1, Article No. 016007, Jan. 2014. doi: 10.1088/1748-3182/9/1/016007
    [106]
    P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft robotic glove for combined assistance and at-home rehabilitation,” Rob. Autonom. Syst., vol. 73, pp. 135–143, Nov. 2015. doi: 10.1016/j.robot.2014.08.014
    [107]
    H. K. Yap, H. Y. Ng, and C. H. Yeow, “High-force soft printable pneumatics for soft robotic applications,” Soft Rob., vol. 3, no. 3, pp. 144–158, Sept. 2016. doi: 10.1089/soro.2016.0030
    [108]
    A. A. Calderón, J. C. Ugalde, J. C. Zagal, and N. O. Pérez-Arancibia, “Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Qingdao, China, 2016, pp. 31–38.
    [109]
    D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, pp. 467–475, May 2015. doi: 10.1038/nature14543
    [110]
    Y. Sun, X. Q. Liang, H. K. Yap, J. W. Cao, M. H. Ang, and R. C. H. Yeow, “Force measurement toward the instability theory of soft pneumatic actuators,” IEEE Rob. Autom. Lett., vol. 2, no. 2, pp. 985–992, Apr. 2017. doi: 10.1109/LRA.2017.2656943
    [111]
    Y. Sun, S. Song, X. Q. Liang, and H. L. Ren, “A miniature soft robotic manipulator based on novel fabrication methods,” IEEE Rob. Autom. Lett., vol. 1, no. 2, pp. 617–623, Jul. 2016. doi: 10.1109/LRA.2016.2521889
    [112]
    Y. Sun, Y. S. Song, and J. Paik, “Characterization of silicone rubber based soft pneumatic actuators,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 4446–4453.
    [113]
    H. K. Yap, N. Kamaldin, J. H. Lim, F. A. Nasrallah, J. C. H. Goh, and C. H. Yeow, “A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 6, pp. 782–793, Jun. 2017. doi: 10.1109/TNSRE.2016.2602941
    [114]
    A. Albu-Schaffer, W. Bertleff, B. Rebele, B. Schafer, K. Landzettel, and G. Hirzinger, “ROKVISS - robotics component verification on ISS current experimental results on parameter identification,” in Proc. IEEE Int. Conf. Robotics and Automation, Orlando, FL, USA, 2006, pp. 3879–3885.
    [115]
    A. Albu-Schäffer, O. Eiberger, M. Fuchs, M. Grebenstein, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, S. Wolf, C. Borst, and G. Hirzinger, “Anthropomorphic soft robotics - from torque control to variable intrinsic compliance,” in Robotics Research, Berlin, Heidelberg, 2011, pp. 185–207.
    [116]
    R. Fotouhi, H. Salmasi, S. Dezfulian, and R. Burton, “Design and control of a hydraulic simulator for a flexible-joint robot,” Adv. Rob., vol. 23, no. 6, pp. 655–679, Jan. 2009. doi: 10.1163/156855309X431668
    [117]
    S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger, “Collision detection and reaction: A contribution to safe physical human-robot interaction,” in Proc. IEEE/RSJ Int. Conf. Robots and Intelligent Systems, Nice, France, 2008, pp. 3356–3363.
    [118]
    G. Hirzinger, N. Sporer, M. Schedl, J. Butterfaβ, and M. Grebenstein, “Torque-controlled lightweight arms and articulated hands: Do we reach technological limits now?” Int. J. Rob. Res., vol. 23, no. 4-5, pp. 331–340, Apr. 2004. doi: 10.1177/0278364904042201
    [119]
    J. K. Paik, B. H. Shin, Y. B. Bang, and Y. B. Shim, “Development of an anthropomorphic robotic arm and hand for interactive humanoids,” J. Bionic Eng., vol. 9, no. 2, pp. 133–142, Jun. 2012. doi: 10.1016/S1672-6529(11)60107-8
    [120]
    J. Bae, L. N. Awad, A. Long, K. O'Donnell, K. Hendron, K. G. Holt, T. D. Ellis, and C. J. Walsh, “Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke,” J. Exp. Biol., vol. 221, no. Pt 5, Article No. jeb168815, Mar. 2018.
    [121]
    J. Bae, C. Siviy, M. Rouleau, N. Menard, K. O'Donnell, I. Galiana, M. Athanassiu, D. Ryan, C. Bibeau, L. Sloot, P. Kudzia, T. Ellis, L. Awad, and C. J. Walsh, “A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, QLD, Australia, 2018, pp. 2820–2827.
    [122]
    D. Braganza, D. M. Dawson, I. D. Walker, and N. Nath, “A neural network controller for continuum robots,” IEEE Trans. Rob., vol. 23, no. 6, pp. 1270–1277, Dec. 2007. doi: 10.1109/TRO.2007.906248
    [123]
    I. S. Godage, Y. Wang, and I. D. Walker, “Energy based control of compass gait soft limbed bipeds,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago, IL, USA, 2014, pp. 4057–4064.
    [124]
    I. S. Godage, R. Wirz, I. D. Walker, and R. J. Webster, “Accurate and efficient dynamics for variable-length continuum arms: A center of gravity approach,” Soft Rob., vol. 2, no. 3, pp. 96–106, Sept. 2015. doi: 10.1089/soro.2015.0006
    [125]
    S. M. H. Sadati, S. E. Naghibi, I. D. Walker, K. Althoefer, and T. Nanayakkara, “Control space reduction and real-time accurate modeling of continuum manipulators using ritz and ritz-galerkin methods,” IEEE Rob. Autom. Lett., vol. 3, no. 1, pp. 328–335, Jan. 2018. doi: 10.1109/LRA.2017.2743100
    [126]
    J. L. C. Santiago, I. S. Godage, P. Gonthina, and I. D. Walker, “Soft robots and kangaroo tails: Modulating compliance in continuum structures through mechanical layer jamming,” Soft Rob., vol. 3, no. 2, pp. 54–63, Jun. 2016. doi: 10.1089/soro.2015.0021
    [127]
    I. D. Walker, D. M. Dawson, T. Flash, F. W. Grasso, R. T. Hanlon, B. Hochner, W. M. Kier, C. C. Pagano, C. D. Rahn, and Q. M. Zhang, “Continuum robot arms inspired by cephalopods,” in Proc. Volume 5804, Unmanned Ground Vehicle Technology VII, Orlando, Florida, United States, 2005, pp. 303–314.
    [128]
    A. Zatopa, S. Walker, and Y. Menguc, “Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots,” Soft Rob., vol. 5, no. 3, pp. 258–271, Jun. 2018. doi: 10.1089/soro.2017.0019
    [129]
    S. M. H. Sadati, L. Sullivan, I. D. Walker, K. Althoefer, and T. Nanayakkara, “Three-dimensional-printable thermoactive helical interface with decentralized morphological stiffness control for continuum manipulators,” IEEE Rob. Autom. Lett., vol. 3, no. 3, pp. 2283–2290, Jul. 2018. doi: 10.1109/LRA.2018.2805163
    [130]
    J. Walker, T. Zidek, C. Harbel, S. Yoon, F. S. Strickland, S. Kumar, and M. Shin, “Soft robotics: A review of recent developments of pneumatic soft actuators,” Actuators, vol. 9, no. 1, Article No. 3, Jan. 2020. doi: 10.3390/act9010003
    [131]
    K. Walker and H. Hauser, “Evolving optimal learning strategies for robust locomotion in the spring-loaded inverted pendulum model,” Int. J. Adv. Rob. Syst., vol. 16, no. 6, pp. 1–13, Oct. 2019.
    [132]
    B. Willimon, S. Birchfield, and I. Walker, “Interactive perception of rigid and non-rigid objects regular paper,” Int. J. Adv. Rob. Syst., vol. 9, pp. 1–12, Sept. 2012. doi: 10.5772/7789
    [133]
    M. Grün, R. Müller, and U. Konigorski, “Model based control of series elastic actuators,” in Proc. 4th IEEE RAS & EMBS Int. Conf. Biomedical Robotics and Biomechatronics, Rome, Italy, 2012, pp. 538–543.
    [134]
    L. Cappello, D. K. Binh, S. C. Yen, and L. Masia, “Design and preliminary characterization of a soft wearable exoskeleton for upper limb,” in Proc. 6th IEEE Int. Conf. Biomedical Robotics and Biomechatronics, Singapore, 2016, pp. 623–630.
    [135]
    B. K. Dinh, L. Cappello, and L. Masia, “Localized extreme learning machine for online inverse dynamic model estimation in soft wearable exoskeleton,” in Proc. 6th IEEE Int. Conf. Biomedical Robotics and Biomechatronics, Singapore, 2016, pp. 580–587.
    [136]
    B. K. Dinh, M. Xiloyannis, C. W. Antuvan, L. Cappello, and L. Masia, “Hierarchical cascade controller for assistance modulation in a soft wearable arm exoskeleton,” IEEE Rob. Autom. Lett., vol. 2, no. 3, pp. 1786–1793, Jul. 2017. doi: 10.1109/LRA.2017.2668473
    [137]
    D. M. Blau and R. M. Goodstein, “Can social security explain trends in labor force participation of older men in the United States,” J. Hum. Resour., vol. 45, no. 2, pp. 328–363, Feb. 2010.
    [138]
    D. J. Villarreal and R. D. Gregg, “A survey of phase variable candidates of human locomotion,” in Proc. 36th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 2014, pp. 4017–4021.
    [139]
    S. W. Leigh, H. Agrawal, and P. Maes, “Robotic symbionts: Interweaving human and machine actions,” IEEE Pervas. Comput., vol. 17, no. 2, pp. 34–43, Apr.–Jun. 2018. doi: 10.1109/MPRV.2018.022511241
    [140]
    Y. Ding, I. Galiana, C. Siviy, F. A. Panizzolo, and C. Walsh, “IMU-based iterative control for hip extension assistance with a soft exosui,” in Proc. IEEE Int. Conf. Robotics and Automation, Stockholm, Sweden, 2016, pp. 3501–3508.
    [141]
    R. W. Jackson and S. H. Collins, “An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons,” J. Appl. Physiol., vol. 119, no. 5, pp. 541–557, Sept. 2015. doi: 10.1152/japplphysiol.01133.2014
    [142]
    G. Lee, Y. Ding, I. G. Bujanda, N. Karavas, Y. M. Zhou, and C. J. Walsh, “Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vancouver, BC, Canada, 2017, pp. 1699–1706.
    [143]
    J. Realmuto, G. Klute, and S. Devasia, “Preliminary investigation of symmetry learning control for powered ankle-foot prostheses,” in Proc. Wearable Robotics Association Conf., Scottsdale, AZ, USA, 2019, pp. 40–45.
    [144]
    K. A. Witte, A. M. Fatschel, and S. H. Collins, “Design of a lightweight, tethered, torque-controlled knee exoskeleton,” in Proc. Int. Conf. Rehabilitation Robotics, London, UK, 2017, pp. 1646–1653.
    [145]
    K. A. Witte, J. J. Zhang, R. W. Jackson, and S. H. Collins, “Design of two lightweight, high-bandwidth torque-controlled ankle exoskeletons,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 1223–1228.
    [146]
    J. J. Zhang, C. C. Cheah, and S. H. Collins, “Experimental comparison of torque control methods on an ankle exoskeleton during human walking,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 5584–5589.
    [147]
    J. J. Zhang, P. Fiers, K. A. Witte, R. W. Jackson, K. L. Poggensee, C. G. Atkeson, and S. H. Collins, “Human-in-the-loop optimization of exoskeleton assistance during walking,” Science, vol. 356, no. 6344, pp. 1280–1284, Jun. 2017. doi: 10.1126/science.aal5054
    [148]
    E. S. Altinkaynak and D. J. Braun, “A phase-invariant linear torque-angle-velocity relation hidden in human walking data,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 702–711, Apr. 2019. doi: 10.1109/TNSRE.2019.2899970
    [149]
    D. Quintero, D. J. Villarreal, and R. D. Gregg, “Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Daejeon, South Korea, 2016, pp. 5427–5433.
    [150]
    D. Quintero, D. J. Villarreal, D. J. Lambert, S. Kapp, and R. D. Gregg, “Continuous-phase control of a powered knee-ankle prosthesis: Amputee experiments across speeds and inclines,” IEEE Trans. Rob., vol. 34, no. 3, pp. 686–701, Jun. 2018. doi: 10.1109/TRO.2018.2794536
    [151]
    N. Thatte, T. Shah, and H. Geyer, “Robust and adaptive lower limb prosthesis stance control via extended kalman filter-based gait phase estimation,” IEEE Rob. Autom. Lett., vol. 4, no. 4, pp. 3129–3136, Oct. 2019. doi: 10.1109/LRA.2019.2924841
    [152]
    D. J. Villarreal and R. D. Gregg, “Unified phase variables of relative degree two for human locomotion,” in Proc. 38th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 2016, pp. 6262–6267.
    [153]
    P. T. Chinimilli, S. C. Subramanian, S. Redkar, and T. Sugar, “Human locomotion assistance using two-dimensional features based adaptive oscillator,” in Proc. Wearable Robotics Association Conf., Scottsdale, AZ, USA, 2019, pp. 92–98.
    [154]
    J. De la Fuente, T. G. Sugar, and S. Redkar, “Nonlinear, phase-based oscillator to generate and assist periodic motions,” J. Mech. Rob., vol. 9, no. 2, Article No. 024502, Apr. 2017. doi: 10.1115/1.4036023
    [155]
    K. Seo, S. Hyung, B. K. Choi, Y. Lee, and Y. Shim, “A new adaptive frequency oscillator for gait assistance,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 5565–5571.
    [156]
    T. F. Yan, A. Parri, V. R. Garate, M. Cempini, R. Ronsse, and N. Vitiello, “An oscillator-based smooth real-time estimate of gait phase for wearable robotics,” Autonom. Rob., vol. 41, no. 3, pp. 759–774, Mar. 2017. doi: 10.1007/s10514-016-9566-0
    [157]
    E. H. Zheng, S. Manca, T. F. Yan, A. Parri, N. Vitiello, and Q. N. Wang, “Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators,” IEEE Trans. Biomed. Eng., vol. 64, no. 10, pp. 2419–2430, Oct. 2017. doi: 10.1109/TBME.2017.2672720
    [158]
    L. J. Hargrove, A. M. Simon, A. J. Young, R. D. Lipschutz, S. B. Finucane, D. G. Smith, and T. A. Kuiken, “Robotic leg control with EMG decoding in an amputee with nerve transfers,” N. Engl. J. Med., vol. 369, no. 13, pp. 1237–1242, Sept. 2013. doi: 10.1056/NEJMoa1300126
    [159]
    N. S. Meraz, M. Sobajima, T. Aoyama, and Y. Hasegawa, “Modification of body schema by use of extra robotic thumb,” ROBOMECH J., vol. 5, no. 1, Article No. 3, Jan. 2018. doi: 10.1186/s40648-018-0100-3
    [160]
    Y. N. Zhu, T. Ito, T. Aoyama, and Y. Hasegawa, “Development of sense of self-location based on somatosensory feedback from finger tips for extra robotic thumb control,” ROBOMECH J., vol. 6, no. 1, Article No. 7, Jun. 2019. doi: 10.1186/s40648-019-0135-0
    [161]
    Y. T. He, D. Eguren, J. M. Azorín, R. G. Grossman, T. P. Luu, and J. L. Contreras-Vidal, “Brain-machine interfaces for controlling lower-limb powered robotic systems,” J. Neural Eng., vol. 15, no. 2, Article No. 021004, Apr. 2018. doi: 10.1088/1741-2552/aaa8c0
    [162]
    J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. L. Nicolelis, “Learning to control a brain-machine interface for reaching and grasping by primates,” PLoS Biol., vol. 1, no. 2, Article No. E42, Apr. 2003. doi: 10.1371/journal.pbio.0000042
    [163]
    L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, pp. 372–375, May 2012. doi: 10.1038/nature11076
    [164]
    C. I. Penaloza and S. Nishio, “BMI control of a third arm for multitasking,” Sci. Rob., vol. 3, no. 20, Article No. eaat1228, Jul. 2018. doi: 10.1126/scirobotics.aat1228
    [165]
    W. H. Deng, I. Papavasileiou, Z. Qiao, W. L. Zhang, K. Y. Lam, and S. Han, “Advances in automation technologies for lower extremity neurorehabilitation: A review and future challenges,” IEEE Rev. Biomed. Eng., vol. 11, pp. 289–305, May 2018. doi: 10.1109/RBME.2018.2830805
    [166]
    M. R. Tucker, J. Olivier, A. Pagel, H. Bleuler, M. Bouri, O. Lambercy, J. D. R. Millán, R. Riener, H. Vallery, and R. Gassert, “Control strategies for active lower extremity prosthetics and orthotics: A review,” J. Neuroeng. Rehabil., vol. 12, no. 1, Article No. 1, Jan. 2015. doi: 10.1186/1743-0003-12-1
    [167]
    D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 96–114, Jun. 2006. doi: 10.1109/MCS.2006.1636313
    [168]
    R. D. Gregg, E. J. Rouse, L. J. Hargrove, and J. W. Sensinger, “Evidence for a time-invariant phase variable in human ankle control,” PLoS One, vol. 9, no. 2, Article No. e89163, Feb. 2014. doi: 10.1371/journal.pone.0089163
    [169]
    M. A. Sharbafi and A. Seyfarth, Bioinspired Legged Locomotion: Models, Concepts, Control and Applications. Cambridge, MA: Elsevier, 2017.
    [170]
    D. J. Villarreal, H. A. Poonawala, and R. D. Gregg, “A robust parameterization of human gait patterns across phase-shifting perturbations,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 3, pp. 265–278, Mar. 2017. doi: 10.1109/TNSRE.2016.2569019
    [171]
    W. G. Huo, S. Mohammed, Y. Amirat, and K. Kong, “Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance,” IEEE Trans. Rob., vol. 34, no. 4, pp. 1035–1052, Aug. 2018.
    [172]
    R. Ronsse, T. Lenzi, N. Vitiello, B. Koopman, E. van Asseldonk, S. M. M. De Rossi, J. van den Kieboom, H. van der Kooij, M. C. Carrozza, and A. J. Ijspeert, “Oscillator-based assistance of cyclical movements: Model-based and model-free approaches,” Med. Biol. Eng. Comput., vol. 49, no. 10, pp. 1173–1185, Sept. 2011. doi: 10.1007/s11517-011-0816-1
    [173]
    L. Liu, Y. J. Liu, D. P. Li, S. C. Tong, and Z. S. Wang, “Barrier lyapunov function-based adaptive fuzzy FTC for switched systems and its applications to resistance-inductance-capacitance circuit system,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3491–3502, Aug. 2020. doi: 10.1109/TCYB.2019.2931770
    [174]
    L. Liu, Y. J. Liu, A. Q. Chen, S. C. Teng, and C. L. P. Chen, “Integral barrier lyapunov function-based adaptive control for switched nonlinear systems,” Sci. China Inform. Sci., vol. 63, no. 3, Article No. 132203, Feb. 2020. doi: 10.1007/s11432-019-2714-7
    [175]
    L. Tang, D. Ma, and J. Zhao, “Adaptive neural control for switched non-linear systems with multiple tracking error constraints,” IET Signal Proc., vol. 13, no. 3, pp. 330–337, May 2019. doi: 10.1049/iet-spr.2018.5077
    [176]
    R. Van Ham, T. G. Sugar, B. Vanderborght, K. W. Hollander, and D. Lefeber, “Compliant actuator designs,” IEEE Rob. Autom. Mag., vol. 16, no. 3, pp. 81–94, Sept. 2009. doi: 10.1109/MRA.2009.933629
    [177]
    B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli N. Tsagarakis, M. Van Damme, R. Van Ham, L. C. Visser, and S. Wolf, “Variable impedance actuators: A review,” Rob. Autonom. Syst., vol. 61, no. 12, pp. 1601–1614, Dec. 2013. doi: 10.1016/j.robot.2013.06.009
    [178]
    M. Laffranchi, L. S. Chen, N. Kashiri, J. Lee, N. G. Tsagarakis, and D. G. Caldwell, “Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots,” Rob. Autonom. Syst., vol. 62, no. 12, pp. 1827–1836, Dec. 2014. doi: 10.1016/j.robot.2014.06.007
    [179]
    O. B. Farah, Z. Guo, C. Gong, C. Zhu, and H. Y. Yu, “Power analysis of a series elastic actuator for ankle joint gait rehabilitation,” in Proc. IEEE Int. Conf. Robotics and Automation, Seattle, WA, USA, 2015, pp. 2754–2760.
    [180]
    N. Paine, S. Oh, and L. Sentis, “Design and control considerations for high-performance series elastic actuators,” IEEE/ASME Trans. Mech., vol. 19, no. 3, pp. 1080–1091, Jun. 2014. doi: 10.1109/TMECH.2013.2270435
    [181]
    G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, 1995, pp. 399–406.
    [182]
    J. E. Pratt and B. T. Krupp, “Series elastic actuators for legged robots,” in Proc. Volume 5422, Unmanned Ground Vehicle Technology VI, Orlando, Florida, United States, 2004, pp. 135–144.
    [183]
    J. W. Sensinger and R. F. F. Weir, “Improvements to series elastic actuators,” in Proc. IEEE/ASME Int. Conf. Mechatronic and Embedded Systems and Applications, Beijing, China, 2006, pp. 1–7.
    [184]
    G. Wyeth, “Demonstrating the safety and performance of a velocity sourced series elastic actuator,” in Proc. IEEE Int. Conf. Robotics and Automation, Pasadena, CA, USA, 2008, pp. 3642–3647.
    [185]
    K. Kong, J. Bae, and M. Tomizuka, “Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications,” IEEE/ASME Trans. Mech., vol. 14, no. 1, pp. 105–118, Feb. 2009. doi: 10.1109/TMECH.2008.2004561
    [186]
    H. Vallery, J. Veneman, E. Van Asseldonk, R. Ekkelenkamp, M. Buss, and H. Van der Kooij, “Compliant actuation of rehabilitation robots,” IEEE Rob. Autom. Mag., vol. 15, no. 3, pp. 60–69, Sept. 2008. doi: 10.1109/MRA.2008.927689
    [187]
    S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein, H. Höppner, E. Burdet, D. G. Caldwell, R. Carloni, M. G. Catalano, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, B. Vanderborght, L. C. Visser, A. Bicchi, and A. Albu-Schäffer, “Variable stiffness actuators: Review on design and components,” IEEE-Asme Trans. Mech., vol. 21, no. 5, pp. 2418–2430, Oct. 2016. doi: 10.1109/TMECH.2015.2501019
    [188]
    M. Yalcin, B. Uzunoglu, E. Altintepe, and V. Patoglu, “VnSA: Variable negative stiffness actuation based on nonlinear deflection characteristics of buckling beams,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 5418–5424.
    [189]
    J. C. Dean and A. D. Kuo, “Elastic coupling of limb joints enables faster bipedal walking,” J. Roy. Soc. Interf., vol. 6, no. 35, pp. 561–573, Jun. 2009. doi: 10.1098/rsif.2008.0415
    [190]
    A. Jafari, N. G. Tsagarakis, I. Sardellitti, and D. G. Caldwell, “A new actuator with adjustable stiffness based on a variable ratio lever mechanism,” IEEE/ASME Trans. Mech., vol. 19, no. 1, pp. 55–63, Feb. 2014. doi: 10.1109/TMECH.2012.2218615
    [191]
    K. Kong, J. Bae, and M. Tomizuka, “A compact rotary series elastic actuator for human assistive systems,” IEEE/ASME Trans. Mech., vol. 17, no. 2, pp. 288–297, Apr. 2012. doi: 10.1109/TMECH.2010.2100046
    [192]
    D. Leach, F. Günther, N. Maheshwari, and F. Iida, “Linear multimodal actuation through discrete coupling,” IEEE/ASME Trans. Mech., vol. 19, no. 3, pp. 827–839, Jun. 2014. doi: 10.1109/TMECH.2013.2261532
    [193]
    G. Wyeth, “Control issues for velocity sourced series elastic actuators,” in Proc. Australasian Conf. Robotics and Automation, Australian, 2006, pp. 1–6.
    [194]
    P. Beyl, M. Van Damme, P. Cherelle, and D. Lefeber, “Safe and compliant guidance in robot-assisted gait rehabilitation using proxy-based sliding mode control,” in Proc. IEEE Int. Conf. Rehabilitation Robotics, Kyoto, Japan, 2009, pp. 277–282.
    [195]
    P. Beyl, M. Van Damme, R. Van Ham, B. Vanderborght, and D. Lefeber, “Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons,” IEEE/ASME Trans. Mech., vol. 19, no. 3, pp. 1046–1056, Jun. 2014. doi: 10.1109/TMECH.2013.2268942
    [196]
    S. Balasubramanian, R. H. Wei, M. Perez, B. Shepard, E. Koeneman, J. Koeneman, and J. P. He, “RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions,” in Proc. Virtual Rehabilitation, Vancouver, BC, Canada, 2008, pp. 163–167.
    [197]
    K. Kadota, M. Akai, K. Kawashima, and T. Kagawa, “Development of Power-Assist Robot Arm using pneumatic rubbermuscles with a balloon sensor,” in Proc. 18th IEEE Int. Symp. Robot and Human Interactive Communication, Toyama, Japan, 2009, pp. 546–551.
    [198]
    J. Wu, J. Huang, Y. J. Wang, and K. X. Xing, “RLS-ESN based PID control for rehabilitation robotic arms driven by PM-TS actuators,” in Proc. Int. Conf. Modelling, Identification and Control, Okayama, Japan, 2010, pp. 511–516.
    [199]
    J. Wu, Y. J. Wang, J. Huang, and K. X. Xing, “Artificial bee colony algorithm based auto-disturbance rejection control for rehabilitation robotic arm driven by PM-TS actuator,” in Proc. Int. Conf. Modelling, Identification and Control, Wuhan, China, 2012, pp. 802– 807.
    [200]
    K. X. Xing, J. Huang, J. P. He, Y. J. Wang, Q. Xu, and J. Wu, “Sliding mode tracking for actuators comprising pneumatic muscle and torsion spring,” Trans. Inst. Measurem. Control, vol. 34, no. 2–3, pp. 255–277, Apr. 2012. doi: 10.1177/0142331210366652
    [201]
    A. H. A. Stienen, E. E. G. Hekman, H. ter Braak, A. M. M. Aalsma, F. C. T. van der Helm, and H. van der Kooij, “Design of a rotational hydroelastic actuator for a powered exoskeleton for upper limb rehabilitation,” IEEE Trans. Biomed. Eng., vol. 57, no. 3, pp. 728–735, Mar. 2010. doi: 10.1109/TBME.2009.2018628
    [202]
    J. S. Sulzer, R. A. Roiz, M. A. Peshkin, and J. L. Patton, “A highly backdrivable, lightweight knee actuator for investigating gait in stroke,” IEEE Trans. Rob., vol. 25, no. 3, pp. 539–548, Jun. 2009. doi: 10.1109/TRO.2009.2019788
    [203]
    J. Zhao, X. Y. Liu, X. Z. Zang, and X. G. Wu, “A PD control scheme for passive dynamic walking based on series elastic actuator,” in Proc. 9th IEEE Int. Conf. Mechatronics and Automation, Chengdu, China, 2012, pp. 255–260.
    [204]
    X. Cui, W. H. Chen, X. Jin, and S. K. Agrawal, “Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance,” IEEE/ASME Trans. Mech., vol. 22, no. 1, pp. 161–172, Feb. 2017. doi: 10.1109/TMECH.2016.2618888
    [205]
    D. Popov, I. Gaponov, and J. H. Ryu, “Portable exoskeleton glove with soft structure for hand assistance in activities of daily living,” IEEE/ASME Trans. Mech., vol. 22, no. 2, pp. 865–875, Apr. 2017. doi: 10.1109/TMECH.2016.2641932
    [206]
    Y. D. Li and E. T. Hsiao-Wecksler, “Gait mode recognition and control for a portable-powered ankle-foot orthosis,” in Proc. IEEE 13th Int. Conf. Rehabilitation Robotics, Seattle, WA, USA, 2013, pp. 1–8.
    [207]
    M. Ahmadi, M. O'Neil, M. Fragala-Pinkham, N. Lennon, and S. Trost, “Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy,” J. Neuroeng. Rehabil., vol. 15, no. 1, Article No. 105, Nov. 2018. doi: 10.1186/s12984-018-0456-x
    [208]
    H. L. Bartlett and M. Goldfarb, “A phase variable approach for IMU-based locomotion activity recognition,” IEEE Trans. Biomed. Eng., vol. 65, no. 6, pp. 1330–1338, Jun. 2018. doi: 10.1109/TBME.2017.2750139
    [209]
    E. D. Ledoux, “Inertial sensing for gait event detection and transfemoral prosthesis control strategy,” IEEE Trans. Biomed. Eng., vol. 65, no. 12, pp. 2704–2712, Dec. 2018. doi: 10.1109/TBME.2018.2813999
    [210]
    C. Penaloza, D. Hernandez-Carmona, and S. Nishio, “Towards intelligent brain-controlled body augmentation robotic limbs,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Miyazaki, Japan, 2018, pp. 1011–1015.
    [211]
    A. Kojima, H. Yamazoe, M. G. Chung, and J. H. Lee, “Control of wearable robot arm with hybrid actuation system,” in Proc. IEEE/SICE Int. Symp. System Integration, Taipei, China, 2017, pp. 1022–1027.
    [212]
    A. Kojima, H. Yamazoe, and J. H. Lee, “User friendly podalic interface for light weighted wearable robot arm,” in Proc. 14th Int. Conf. Ubiquitous Robots and Ambient Intelligence, Jeju, South Korea, 2017, pp. 181–184.
    [213]
    B. J. Edelman, J. Meng, D. Suma, C. Zurn, E. Nagarajan, B. S. Baxter, C. C. Cline, and B. He, “Noninvasive neuroimaging enhances continuous neural tracking for robotic device control,” Sci. Rob., vol. 4, no. 31, Article No. eaaw6844, Jun. 2019. doi: 10.1126/scirobotics.aaw6844
    [214]
    K. Gui, H. H. Liu, and D. G. Zhang, “Toward multimodal human-robot interaction to enhance active participation of users in gait rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 11, pp. 2054–2066, Nov. 2017. doi: 10.1109/TNSRE.2017.2703586
    [215]
    C. Brunner, B. Blankertz, F. Cincotti, A. Kübler, D. Mattia, F. Miralles, A. Nijholt, B. Otal, P. Salomon, and G. R. Müller-Putz, “BNCI horizon 2020 - towards a roadmap for brain/neural computer interaction,” in Proc. 8th Int. Conf. Universal Access in Human-Computer Interaction, Heraklion, Greece, 2014, pp. 475–486.
    [216]
    H. Hsu, I. Kang, and A. J. Young, “Design and evaluation of a proportional myoelectric controller for hip exoskeletons during walking,” in Proc. ASME Dynamic Systems and Control Conf., Atlanta, Georgia, 2018.
    [217]
    Y. Sankai and T. Sakurai, “Exoskeletal cyborg-type robot,” Sci. Rob., vol. 3, no. 17, Article No. eaat3912, Apr. 2018. doi: 10.1126/scirobotics.aat3912
    [218]
    N. L. Tagliamonte, S. Valentini, A. Sudano, I. Portaccio, C. De Leonardis, D. Formica, and D. Accoto, “Switching assistance for exoskeletons during cyclic motions,” Front. Neurorobot., vol. 13, Article No. 41, Jun. 2019. doi: 10.3389/fnbot.2019.00041
    [219]
    L. Drohne, K. Nakabayashi, Y. Iwasaki, and H. Iwata, “Design consideration for arm mechanics and attachment positions of a wearable robot arm,” in Proc. IEEE/SICE Int. Symp. System Integration, Paris, France, 2019, pp. 645–650.
    [220]
    R. F. Weir, P. R. Troyk, G. A. DeMichele, D. A. Kerns, J. F. Schorsch, and H. Maas, “Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording,” IEEE Trans. Biomed. Eng., vol. 56, no. 1, pp. 159–171, Jan. 2009. doi: 10.1109/TBME.2008.2005942
    [221]
    T. Shibata, “An overview of human interactive robots for psychological enrichment,” Proc. IEEE, vol. 92, no. 11, pp. 1749–1758, Nov. 2004. doi: 10.1109/JPROC.2004.835383
    [222]
    M. Benali-Khoudja, M. Hafez, J. M. Alexandre, J. Benachour, and A. Kheddar, “Thermal feedback model for virtual reality,” in Proc. Int. Symp. Micromechatronics and Human Science, Nagoya, Japan, 2003, pp. 153–158.
    [223]
    K. Choi, P. Kim, K. S. Kim, and S. Kim, “Two-channel electrotactile stimulation for sensory feedback of fingers of prosthesis,” in Proc. IEEE/REJ Int. Conf. Intelligent Robots and Systems, Daejeon, South Korea, 2016, pp. 1133–1138.
    [224]
    S. Dosen, M. C. Schaeffer, and D. Farina, “Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback,” J. Neuroeng. Rehabil., vol. 11, Article No. 138, Sept. 2014. doi: 10.1186/1743-0003-11-138
    [225]
    M. Nabeel, K. Aqeel, M. N. Ashraf, M. I. Awan, and M. Khurram, “Vibrotactile stimulation for 3D printed prosthetic hand,” in Proc. 2nd Int. Conf. Robotics and Artificial Intelligence, Rawalpindi, Pakistan, 2016, pp. 202–207.
    [226]
    F. Rattay, “Analysis of models for extracellular fiber stimulation,” IEEE Trans. Biomed. Eng., vol. 36, no. 7, pp. 676–682, Jul. 1989. doi: 10.1109/10.32099
    [227]
    P. Shi and X. F. Shen, “Sensation feedback and muscle response of electrical stimulation on the upper limb skin: A case study,” in Proc. 7th Int. Conf. Measuring Technology and Mechatronics Automation, Nanchang, China, 2015, pp. 969–972.
    [228]
    A. Y. J. Szeto and F. A. Saunders, “Electrocutaneous stimulation for sensory communication in rehabilitation engineering,” IEEE Trans. Biomed. Eng., vol. BME-29, no. 4, pp. 300–308, Apr. 1982. doi: 10.1109/TBME.1982.324948
    [229]
    H. Yamada, Y. Yamanoi, K. Wakita, and R. Kato, “Investigation of a cognitive strain on hand grasping induced by sensory feedback for myoelectric hand,” in Proc. IEEE Int. Conf. Robotics and Automation, Stockholm, Sweden, 2016, pp. 3549–3554.
    [230]
    R. Y. Zheng and J. T. Li, “Kinematics and workspace analysis of an exoskeleton for thumb and index finger rehabilitation,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Tianjin, China, 2010, pp. 80–84.
    [231]
    P. Chaubey, T. Rosenbaum-Chou, W. Daly, and D. A. Boone, “Closed-loop vibratory haptic feedback in upper-limb prosthetic users,” J. Prosthet. Orthot., vol. 26, no. 3, pp. 120–127, Jul. 2014. doi: 10.1097/JPO.0000000000000030
    [232]
    I. M. Bullock, T. Feix, and A. M. Dollar, “Workspace shape and characteristics for human two- and three-fingered precision manipulation,” IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2196–2207, Sept. 2015. doi: 10.1109/TBME.2015.2418197
    [233]
    N. Li, B. Liu, H. Huo, Y. X. Ye, and L. Jiang, “Human-machine interaction control based on force myograph and electrical stimulation sensory feedback for multi-DOF robotic hand,” Robot, vol. 37, no. 6, pp. 718–724, Nov. 2015.
    [234]
    D. G. Zhang, F. Xu, H. Xu, P. B. Shull, and X. Y. Zhu, “Quantifying different tactile sensations evoked by cutaneous electrical stimulation using electroencephalography features,” Int. J. Neural Syst., vol. 26, no. 2, Article No. 1650006, Mar. 2016. doi: 10.1142/S0129065716500064
    [235]
    T. Shibata, “The use of human interactive robots for psychological enrichment,” Proc. IEEE, vol. 92, no. 11, pp. 1743–1745, Nov. 2004. doi: 10.1109/JPROC.2004.835386
    [236]
    M. R. Zinn, O. Khatib, B. Roth, and J. K. Salisbury, “Playing it safe [human-friendly robots],” IEEE Rob. Autom. Mag., vol. 11, no. 2, pp. 12–21, Jun. 2004. doi: 10.1109/MRA.2004.1310938
    [237]
    M. S. Erden and T. Tomiyama, “Human-intent detection and physically interactive control of a robot without force sensors,” IEEE Trans. Rob., vol. 26, no. 2, pp. 370–382, Apr. 2010. doi: 10.1109/TRO.2010.2040202
    [238]
    T. Mukai, M. Onishi, T. Odashima, S. Hirano, and Z. W. Luo, “Development of the tactile sensor system of a human-interactive robot “RI-MAN”,” IEEE Trans. Rob., vol. 24, no. 2, pp. 505–512, Apr. 2008. doi: 10.1109/TRO.2008.917006
    [239]
    C. Ott, A. Albu-Schaffer, A. Kugi, and G. Hirzinger, “On the passivity-based impedance control of flexible joint robots,” IEEE Trans. Rob., vol. 24, no. 2, pp. 416–429, Apr. 2008. doi: 10.1109/TRO.2008.915438
    [240]
    M. Cempini, S. M. M. De Rossi, T. Lenzi, N. Vitiello, and M. C. Carrozza, “Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method,” IEEE Trans. Rob., vol. 29, no. 1, pp. 236–250, Feb. 2013. doi: 10.1109/TRO.2012.2226381
    [241]
    T. L. Chen, M. Ciocarlie, S. Cousins, P. M. Grice, K. Hawkins, K. Hsiao, C. C. Kemp, C. H. King, D. A. Lazewatsky, A. E. Leeper, H. Nguyen, A. Paepcke, C. Pantofaru, W. D. Smart, and L. Takayama, “Robots for humanity: Using assistive robotics to empower people with disabilities,” IEEE Rob. Autom. Mag., vol. 20, no. 1, pp. 30–39, Mar. 2013. doi: 10.1109/MRA.2012.2229950
    [242]
    A. J. Huete, J. G. Victores, S. Martinez, A. Gimenez, and C. Balaguer, “Personal autonomy rehabilitation in home environments by a portable assistive robot,” IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev., vol. 42, no. 4, pp. 561–570, Jul. 2012. doi: 10.1109/TSMCC.2011.2159201
    [243]
    D. J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks, T. Cunningham, D. Portee, J. Bricout, Z. Wang, and A. Behal, “How autonomy impacts performance and satisfaction: Results from a study with spinal cord injured subjects using an assistive robot,” IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum., vol. 42, no. 1, pp. 2–14, Jan. 2012. doi: 10.1109/TSMCA.2011.2159589
    [244]
    W. G. Huo, S. Mohammed, J. C. Moreno, and Y. Amirat, “Lower limb wearable robots for assistance and rehabilitation: A state of the art,” IEEE Syst. J., vol. 10, no. 3, pp. 1068–1081, Sept. 2016. doi: 10.1109/JSYST.2014.2351491
    [245]
    S. Wolf and J. E. Feenders, “Modeling and benchmarking energy efficiency of variable stiffness actuators on the example of the DLR FSJ,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Daejeon, South Korea, 2016, pp. 529–536.
    [246]
    C. Liu, C. Zhu, H. B. Liang, M. Yoshioka, Y. Murata, and Y. C. Yu, “Development of a light wearable exoskeleton for upper extremity augmentation,” in Proc. 23rd Int. Conf. Mechatronics and Machine Vision in Practice, Nanjing, China, 2016, pp. 1–6.
    [247]
    P. K. Salamaliki and I. A. Venetis, “Smooth transition trends and labor force participation rates in the United States,” Empir. Econ., vol. 46, no. 2, pp. 629–652, Mar. 2014. doi: 10.1007/s00181-013-0690-9
    [248]
    S. Marcheschi, F. Salsedo, M. Fontana, and M. Bergamasco, “Body extender: Whole body exoskeleton for human power augmentation,” in Proc. Int. Conf. Robotics and Automation, Shanghai, China, 2011, pp. 611–616.
    [249]
    M. B. Yandell, B. T. Quinlivan, D. Popov, C. Walsh, and K. E. Zelik, “Physical interface dynamics alter how robotic exosuits augment human movement: Implications for optimizing wearable assistive devices,” J. Neuroeng. Rehabil., vol. 14, Article No. 40, Feb. 2017. doi: 10.1186/s12984-017-0247-9
    [250]
    M. del Carmen Sanchez-Villamañan, J. Gonzalez-Vargas, D. Torricelli, J. C. Moreno, and J. L. Pons, “Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles,” J. Neuroeng. Rehabil., vol. 16, Article No. 55, May 2019. doi: 10.1186/s12984-019-0517-9
    [251]
    R. Fluit, E. C. Prinsen, S. Q. Wang, and H. van der Kooij, “A comparison of control strategies in commercial and research knee prostheses,” IEEE Trans. Biomed. Eng., vol. 67, no. 1, pp. 277–290, Jan. 2020. doi: 10.1109/TBME.2019.2912466
    [252]
    F. Dadashi, B. Mariani, S. Rochat, C. J. Bula, B. Santos-Eggimann, and K. Aminian, “Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults,” Sensors, vol. 14, no. 1, pp. 443–457, Dec. 2013. doi: 10.3390/s140100443
    [253]
    H. Hsiao, B. A. Knarr, J. S. Higginson, and S. A. Binder-Macleod, “The relative contribution of ankle moment and trailing limb angle to propulsive force during gait,” Hum. Mov. Sci., vol. 39, pp. 212–221, Feb. 2015. doi: 10.1016/j.humov.2014.11.008
    [254]
    A. Guzik, M. Druzbicki, G. Przysada, A. Wolan-Nieroda, M. Szczepanik, K. Bazarnik-Mucha, and A. Kwolek, “Validity of the gait variability index for individuals after a stroke in a chronic stage of recovery,” Gait Posture, vol. 68, pp. 63–67, Feb. 2019. doi: 10.1016/j.gaitpost.2018.11.014
    [255]
    J. L. Allen, S. A. Kautz, and R. R. Neptune, “Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis,” Clin. Biomech., vol. 29, no. 7, pp. 780–786, Aug. 2014. doi: 10.1016/j.clinbiomech.2014.06.001
    [256]
    J. Kwon, J. H. Park, S. Ku, Y. Jeong, N. J. Paik, and Y. L. Park, “A soft wearable robotic ankle-foot-orthosis for post-stroke patients,” IEEE Rob. Autom. Lett., vol. 4, no. 3, pp. 2547–2552, Jul. 2019. doi: 10.1109/LRA.2019.2908491
    [257]
    M. D. Lewek and G. S. Sawicki, “Trailing limb angle is a surrogate for propulsive limb forces during walking post-stroke,” Clin. Biomech., vol. 67, pp. 115–118, Jul. 2019. doi: 10.1016/j.clinbiomech.2019.05.011
    [258]
    S. A. Roelker, M. G. Bowden, S. A. Kautz, and R. R. Neptune, “Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review,” Gait Posture, vol. 68, pp. 6–14, Feb. 2019. doi: 10.1016/j.gaitpost.2018.10.027
    [259]
    S. Viteckova, P. Kutilek, Z. Svoboda, R. Krupicka, J. Kauler, and Z. Szabo, “Gait symmetry measures: A review of current and prospective methods,” Biomed. Signal Process. Control, vol. 42, pp. 89–100, Apr. 2018. doi: 10.1016/j.bspc.2018.01.013
    [260]
    Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop optimization of hip assistance with a soft exosuit during walking,” Sci. Rob., vol. 3, no. 15, Article No. eaar5438, Feb. 2018. doi: 10.1126/scirobotics.aar5438
    [261]
    T. P. Li, J. S. Chen, C. H. Hu, Y. Ma, Z. Y. Wu, W. T. Wan, Y. Q. Huang, F. M. Jia, C. Gong, S. Wan, and L. M. Li, “Automatic timed up-and-go sub-task segmentation for Parkinson’s disease patients using video-based activity classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 11, pp. 2189–2199, Nov. 2018. doi: 10.1109/TNSRE.2018.2875738
    [262]
    P. Malcolm, S. Lee, S. Crea, C. Siviy, F. Saucedo, I. Galiana, F. A. Panizzolo, K. G. Holt, and C. J. Walsh, “Varying negative work assistance at the ankle with a soft exosuit during loaded walking,” J. Neuroeng. Rehabil., vol. 14, Article No. 62, Jun. 2017. doi: 10.1186/s12984-017-0267-5
    [263]
    M. Ambrus, J. A. Sanchez, J. A. S. Miguel, and F. del-Olmo, “Test-retest reliability of stride length-cadence gait relationship in Parkinson’s disease,” Gait Posture, vol. 71, pp. 177–180, Jun. 2019. doi: 10.1016/j.gaitpost.2019.05.009
    [264]
    S. Bhat, U. R. Acharya, Y. Hagiwara, N. Dadmehr, and H. Adeli, “Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis,” Comput. Biol. Med., vol. 102, pp. 234–241, Nov. 2018. doi: 10.1016/j.compbiomed.2018.09.008
    [265]
    V. G. Torvi, A. Bhattacharya, and S. Chakraborty, “Deep domain adaptation to predict freezing of gait in patients with Parkinson’s disease,” in Proc. 17th IEEE Int. Conf. Machine Learning and Applications, Orlando, FL, USA, 2018, pp. 1001–1006.
    [266]
    S. H. Lee and J. S. Lim, “Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction,” Exp. Syst. Appl., vol. 39, no. 8, pp. 7338–7344, Jun. 2012. doi: 10.1016/j.eswa.2012.01.084
    [267]
    A. Vienne, R. P. Barrois, S. Buffat, D. Ricard, and P. P. Vidal, “Inertial sensors to assess gait quality in patients with neurological disorders: A systematic review of technical and analytical challenges,” Front. Psychol., vol. 8, Article No. 817, May 2017. doi: 10.3389/fpsyg.2017.00817
    [268]
    A. Farvardin, R. J. Murphy, R. B. Grupp, I. Iordachita, and M. Armand, “Towards real-time shape sensing of continuum manipulators utilizing fiber Bragg grating sensors,” in Proc. 6th IEEE Int. Conf. Biomedical Robotics and Biomechatronics, Singapore, 2016, pp. 1180–1185.
    [269]
    R. E. Goldman, A. Bajo, and N. Simaan, “Compliant motion control for multisegment continuum robots with actuation force sensing,” IEEE Trans. Rob., vol. 30, no. 4, pp. 890–902, Aug. 2014. doi: 10.1109/TRO.2014.2309835
    [270]
    P. L. Anderson, A. W. Mahoney, and R. J. Webster, “Continuum reconfigurable parallel robots for surgery: Shape sensing and state estimation with uncertainty,” IEEE Rob. Automat. Lett., vol. 2, no. 3, pp. 1617–1624, Jul. 2017.
    [271]
    M. Grimmer, B. T. Quinlivan, S. Lee, P. Malcolm, D. M. Rossi, C. Siviy, and C. J. Walsh, “Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance,” J. Biomech., vol. 83, pp. 76–84, Jan. 2019. doi: 10.1016/j.jbiomech.2018.11.023
    [272]
    A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, and C. J. Walsh, “A biologically inspired soft exosuit for walking assistance,” Int. J. Rob. Res., vol. 34, no. 6, pp. 744–762, May 2015. doi: 10.1177/0278364914562476

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (2514) PDF downloads(323) Cited by()

    Highlights

    • SRLs are discussed from literature analysis, research status and ontology structure.
    • Control and drive, sensing and perception, and application of SRLs are introduced.
    • Current technical challenges faced by SRLs are analyzed and summarized.
    • Development progress and key technologies of SRLs are reviewed.
    • This paper gives a prospect of technical development trends of SRLs.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return