A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 3
Mar.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
Dezhen Xiong, Daohui Zhang, Xingang Zhao and Yiwen Zhao, "Deep Learning for EMG-based Human-Machine Interaction: A Review," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 512-533, Mar. 2021. doi: 10.1109/JAS.2021.1003865
Citation: Dezhen Xiong, Daohui Zhang, Xingang Zhao and Yiwen Zhao, "Deep Learning for EMG-based Human-Machine Interaction: A Review," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 512-533, Mar. 2021. doi: 10.1109/JAS.2021.1003865

Deep Learning for EMG-based Human-Machine Interaction: A Review

doi: 10.1109/JAS.2021.1003865
Funds:  This work was supported in part by the National Natural Science Foundation of China (U1813214, 61773369, 61903360), the Self-planned Project of the State Key Laboratory of Robotics (2020-Z12), and China Postdoctoral Science Foundation funded project (2019M661155)
More Information
  • Electromyography (EMG) has already been broadly used in human-machine interaction (HMI) applications. Determining how to decode the information inside EMG signals robustly and accurately is a key problem for which we urgently need a solution. Recently, many EMG pattern recognition tasks have been addressed using deep learning methods. In this paper, we analyze recent papers and present a literature review describing the role that deep learning plays in EMG-based HMI. An overview of typical network structures and processing schemes will be provided. Recent progress in typical tasks such as movement classification, joint angle prediction, and force/torque estimation will be introduced. New issues, including multimodal sensing, inter-subject/inter-session, and robustness toward disturbances will be discussed. We attempt to provide a comprehensive analysis of current research by discussing the advantages, challenges, and opportunities brought by deep learning. We hope that deep learning can aid in eliminating factors that hinder the development of EMG-based HMI systems. Furthermore, possible future directions will be presented to pave the way for future research.

     

  • loading
  • [1]
    M. Q. Chen and P. Zhou, “A novel framework based on FastICA for high density surface EMG decomposition,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 117–127, Jan. 2016. doi: 10.1109/TNSRE.2015.2412038
    [2]
    K. Kiatpanichagij and N. Afzulpurkar, “Use of supervised discretization with PCA in wavelet packet transformation-based surface electromyogram classification,” Biomed. Signal Process. Control, vol. 4, no. 2, pp. 127–138, Apr. 2009. doi: 10.1016/j.bspc.2009.02.004
    [3]
    T. Matsubara and J. Morimoto, “Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface,” IEEE Trans. Biomed. Eng., vol. 60, no. 8, pp. 2205–2213, Aug. 2013. doi: 10.1109/TBME.2013.2250502
    [4]
    C. Jorgensen, D. D. Lee, and S. Agabont, “Sub auditory speech recognition based on EMG signals,” in Proc. Int. Joint Conf. Neural Networks, Portland, USA, 2003, pp. 3128−3133.
    [5]
    M. Janke, M. Wand, and T. Schultz, “A spectral mapping method for EMG-based recognition of silent speech,” in Proc. 1st Int. Workshop on Bio-inspired Human-Machine Interfaces and Healthcare Applications, Valencia, Spain, 2010, pp. 22−31.
    [6]
    B. Potočnik, M. Divjak, F. Urh, A. Frančič, J. Kranjec, M. Šavc, I. Cikajlo, Z. Matjačić, M. Zadravec, and A. Holobar, “Estimation of muscle co-activations in wrist rehabilitation after stroke is sensitive to motor unit distribution and action potential shapes,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 5, pp. 1208–1215, May 2020. doi: 10.1109/TNSRE.2020.2980440
    [7]
    J. C. Castiblanco, S. Ortmann, I. F. Mondragon, C. Alvarado-Rojas, M. Jöbges, and J. D. Colorado, “Myoelectric pattern recognition of hand motions for stroke rehabilitation,” Biomed. Signal Process. Control, vol. 57, pp. 101737, Mar. 2020. doi: 10.1016/j.bspc.2019.101737
    [8]
    P. K. Artemiadis and K. J. Kyriakopoulos, “EMG-based control of a robot arm using low-dimensional embeddings,” IEEE Trans. Rob., vol. 26, no. 2, pp. 393–398, Apr. 2010. doi: 10.1109/TRO.2009.2039378
    [9]
    K. Kiguchi and Y. Hayashi, “An EMG-based control for an upper-limb power-assist exoskeleton robot,” IEEE Trans. Syst.,Man,Cybern. Part B–Cybern., vol. 42, no. 4, pp. 1064–1071, Aug. 2012. doi: 10.1109/TSMCB.2012.2185843
    [10]
    P. Artemiadis, “EMG-based robot control interfaces: Past, present and future,” Adv. Rob. Autom., vol. 1, no. 2, pp. 1000e107, Jan. 2012.
    [11]
    M. Simão, N. Mendes, O. Gibaru, and P. Neto, “A review on electromyography decoding and pattern recognition for human-machine interaction,” IEEE Acc., vol. 7, pp. 39564–39582, Mar. 2019. doi: 10.1109/ACCESS.2019.2906584
    [12]
    Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015. doi: 10.1038/nature14539
    [13]
    A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural Information Processing Systems, Lake Tahoe, USA, 2012.
    [14]
    G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012. doi: 10.1109/MSP.2012.2205597
    [15]
    I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014.
    [16]
    D. Buongiorno, G. D. Cascarano, A. Brunetti, I. De Feudis, and V. Bevilacqua, “A survey on deep learning in electromyographic signal analysis,” in Proc. 15th Int. Conf. Intelligent Computing Methodologies, Nanchang, China, 2019, pp. 751−761.
    [17]
    A. Phinyomark and E. Scheme, “EMG pattern recognition in the era of big data and deep learning,” Big Data Cogn. Comput., vol. 2, no. 3, pp. 21, Aug. 2018. doi: 10.3390/bdcc2030021
    [18]
    O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, “Deep learning for healthcare applications based on physiological signals: A review,” Comput. Methods Programs Biomed., vol. 161, pp. 1–13, Jul. 2018. doi: 10.1016/j.cmpb.2018.04.005
    [19]
    M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applications of deep learning and reinforcement learning to biological data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2063–2079, Jun. 2018. doi: 10.1109/TNNLS.2018.2790388
    [20]
    G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006. doi: 10.1162/neco.2006.18.7.1527
    [21]
    Y. LeCun, B. Boser, J. S. Denker, and D. Henderson, “Backpropagation applied to handwritten zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989. doi: 10.1162/neco.1989.1.4.541
    [22]
    J. L. Elman, “Finding structure in time,” Cogn. Sci., vol. 14, no. 2, pp. 179–211, Apr.–Jun. 1990. doi: 10.1207/s15516709cog1402_1
    [23]
    S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. doi: 10.1162/neco.1997.9.8.1735
    [24]
    J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” arXiv: 1412.3555, Dec. 2014.
    [25]
    M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997. doi: 10.1109/78.650093
    [26]
    D. H. Ballard, “Modular learning in neural networks,” in Proc. 6th Nat. Conf. Artificial Intelligence, Seattle, USA, 1987, pp. 279−284.
    [27]
    X. Wu, G. Q. Jiang, X. Wang, P. Xie, and X. L. Li, “A multi-level-denoising autoencoder approach for wind turbine fault detection,” IEEE Acc., vol. 7, pp. 59376–59387, May 2019. doi: 10.1109/ACCESS.2019.2914731
    [28]
    L. F. Li, “Recognizing polyps in wireless endoscopy images using deep stacked auto encoder with constraint image model in flexible medical sensor platform,” IEEE Acc., vol. 8, pp. 60653–60663, Mar. 2020. doi: 10.1109/ACCESS.2020.2981765
    [29]
    M. A. Ranzato, C. S. Poultney, S. Chopra, and C. LeCun, “Efficient learning of sparse representations with an energy-based model,” in Proc. 20th Annu. Conf. Neural Information Processing Systems, Vancouver, Canada, 2007, pp. 1137−1144.
    [30]
    P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion,” J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371–3408, Dec. 2010.
    [31]
    P. Tamilselvan and P. F. Wang, “Failure diagnosis using deep belief learning based health state classification,” Reliab. Eng. Syst. Saf., vol. 115, pp. 124–135, Jul. 2013. doi: 10.1016/j.ress.2013.02.022
    [32]
    A. R. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep belief networks,” IEEE Trans. Audio,Speech,Lang. Process., vol. 20, no. 1, pp. 14–22, Jan. 2012. doi: 10.1109/TASL.2011.2109382
    [33]
    R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief networks for natural language understanding,” IEEE/ACM Trans. Audio,Speech,Lang. Process., vol. 22, no. 4, pp. 778–784, Apr. 2014. doi: 10.1109/TASLP.2014.2303296
    [34]
    X. Gao, M. Iwase, J. Inoue, and E. Maeda, “Poster: Gesture recognition based on ConvLSTM-attention implementation of small data sEMG signals,” in Proc. ACM Int. Joint Conf. Pervasive and Ubiquitous Computing and Proc. ACM Int. Symp. Wearable Computers, London, UK, 2019, pp. 21−24.
    [35]
    Y. H. Wu, B. Zheng, and Y. T. Zhao, “Dynamic gesture recognition based on LSTM-CNN,” in Proc. Chinese Autom. Congr., Xi’an, China, 2018, pp. 2446−2450.
    [36]
    B. A. Xie, H. B. Li, and A. Harland, “Movement and gesture recognition using deep learning and wearable-sensor technology,” Proc. Int. Conf. Artificial Intelligence and Pattern Recognition, Beijing, China, 2018, pp. 26−31.
    [37]
    S. Shen, K. Gu, X. R. Chen, M. Yang, and R. C. Wang, “Movements classification of multi-channel sEMG based on CNN and stacking ensemble learning,” IEEE Acc., vol. 7, pp. 137489–137500, Sep. 2019. doi: 10.1109/ACCESS.2019.2941977
    [38]
    H. F. Chen, Y. Zhang, G. F. Li, Y. F. Fang, and H. H. Liu, “Surface electromyography feature extraction via convolutional neural network,” Int. J. Mach. Learn. Cybern., vol. 11, no. 1, pp. 185–196, Jan. 2020. doi: 10.1007/s13042-019-00966-x
    [39]
    R. Z. Tong, Y. Zhang, H. F. Chen, and H. H. Liu, “Learn the temporal-spatial feature of sEMG via dual-flow network,” Int. J. Humanoid Rob., vol. 16, no. 4, pp. 1941004, Aug. 2019. doi: 10.1142/S0219843619410044
    [40]
    Z. Ding, C. F. Yang, Z. H. Tian, C. Z. Yi, Y. S. Fu, and F. Jiang, “sEMG-based gesture recognition with convolution neural networks,” Sustainability, vol. 10, no. 6, pp. 1865, Jun. 2018. doi: 10.3390/su10061865
    [41]
    W. T. Wei, Q. F. Dai, Y. Wong, Y. Hu, M. Kankanhalli, and W. D. Geng, “Surface-electromyography-based gesture recognition by multi-view deep learning,” IEEE Trans. Biomed. Eng., vol. 66, no. 10, pp. 2964–2973, Oct. 2019. doi: 10.1109/TBME.2019.2899222
    [42]
    W. T. Wei, Y. Wong, Y. Du, Y. Hu, M. Kankanhalli, and W. D. Geng, “A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface,” Pattern Recogn. Lett., vol. 119, pp. 131–138, Mar. 2019. doi: 10.1016/j.patrec.2017.12.005
    [43]
    S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010. doi: 10.1109/TKDE.2009.191
    [44]
    C. Q. Tan, F. C. Sun, T. Kong, W. C. Zhang, C. Yang, and C. F. Liu, “A survey on deep transfer learning,” in Proc. 27th Int. Conf. Artificial Neural Networks and Machine Learning, Rhodes, Greece, 2018, pp. 270−279.
    [45]
    J. Hoffman, S. Guadarrama, E. Tzeng, R. H. Hu, J. Donahue, R. Girshick, T. Darrell, and K. Saenko, “LSDA: Large scale detection through adaptation,” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014,
    [46]
    Y. X. Tang, J. Wang, B. Y. Gao, E. Dellandréa, R. Gaizauskas, and L. M. Chen, “Large scale semi-supervised object detection using visual and semantic knowledge transfer,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 2119−2128.
    [47]
    E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer across domains and tasks,” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 4068−4076.
    [48]
    M. S. Long, H. Zhu, J. M. Wang, and M. I. Jordan, “Unsupervised domain adaptation with residual transfer networks,” in Proc. 30th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 136−144.
    [49]
    Y. Du, W. G. Jin, W. T. Wei, Y. Hu, and W. D. Geng, “Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation,” Sensors, vol. 17, no. 3, pp. 458, Mar. 2017. doi: 10.3390/s17030458
    [50]
    C. Amma, T. Krings, J. Böer, and T. Schultz, “Advancing muscle-computer interfaces with high-density electromyography,” in Proc. 33rd Annu. ACM Conf. Human Factors in Computing Systems, Seoul, Korea (South), 2015, pp. 929−938.
    [51]
    A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “Regression convolutional neural network for improved simultaneous EMG control,” J. Neural Eng., vol. 16, no. 3, pp. 036015, Jun. 2019. doi: 10.1088/1741-2552/ab0e2e
    [52]
    A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “A deep transfer learning approach to reducing the effect of electrode shift in EMG pattern recognition-based control,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 2, pp. 370–379, Feb. 2020. doi: 10.1109/TNSRE.2019.2962189
    [53]
    S. Tam, M. Boukadoum, A. Campeau-Lecours, and B. Gosselin, “A fully embedded adaptive real-time hand gesture classifier leveraging HD-sEMG and deep learning,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 2, pp. 232–243, Apr. 2020. doi: 10.1109/TBCAS.2019.2955641
    [54]
    Y. Chen, S. Yu, K. Ma, S. Y. Huang, G. F. Li, S. Q. Cai, and L. H. Xie, “A continuous estimation model of upper limb joint angles by using surface electromyography and deep learning method,” IEEE Acc., vol. 7, pp. 174940–174950, Dec. 2019. doi: 10.1109/ACCESS.2019.2956951
    [55]
    W. T. Sun, H. X. Liu, R. Y. Tang, Y. R. Lang, J. P. He, and Q. Huang, “sEMG-based hand-gesture classification using a generative flow model,” Sensors, vol. 19, no. 8, pp. 1952, Apr. 2019. doi: 10.3390/s19081952
    [56]
    T. Z. Bao, A. Zaidi, S. G. Xie, and Z. Q. Zhang, “Surface-EMG based wrist kinematics estimation using convolutional neural network,” in Proc. IEEE 16th Int. Conf. Wearable and Implantable Body Sensor Networks, Chicago, USA, 2019, pp. 1−4.
    [57]
    N. Nasri, S. Orts-Escolano, F. Gomez-Donoso, and M. Cazorla, “Inferring static hand poses from a low-cost non-intrusive sEMG sensor,” Sensors, vol. 19, no. 2, pp. 371, Jan. 2019. doi: 10.3390/s19020371
    [58]
    B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 82–94, Jan. 1993. doi: 10.1109/10.204774
    [59]
    W. D. Geng, Y. Du, W. G. Jin, W. T. Wei, Y. Hu, and J. J. Li, “Gesture recognition by instantaneous surface EMG images,” Sci. Rep., vol. 6, no. 1, pp. 36571, Nov. 2016. doi: 10.1038/srep36571
    [60]
    J. C. Chen, X. D. Zhang, Y. Cheng, and N. Xi, “Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks,” Biomed. Signal Process. Control, vol. 40, pp. 335–342, Feb. 2018. doi: 10.1016/j.bspc.2017.10.002
    [61]
    C. Grech, T. Camilleri, and M. Bugeja, “Using neural networks for simultaneous and proportional estimation of upper arm kinematics,” in Proc. 25th Mediterranean Conf. Control and Autom., Valletta, Malta, 2017, pp. 247−252.
    [62]
    A. E. Olsson, P. Sager, E. Andersson, A. Björkman, N. Malešević, and C. Antfolk, “Extraction of multi-labelled movement information from the raw HD-sEMG image with time-domain depth,” Sci. Rep., vol. 9, no. 1, pp. 7244, May 2019. doi: 10.1038/s41598-019-43676-8
    [63]
    R. M. Stephenson, R. Chai, and D. Eager, “Isometric finger pose recognition with sparse channel spatio temporal EMG imaging,” in Proc. 40th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Honolulu, USA, 2018, pp. 5232−5235.
    [64]
    W. Yang, D. P. Yang, Y. Liu, and H. Liu, “EMG pattern recognition using convolutional neural network with different scale signal/spectra input,” Int. J. Humanoid Rob., vol. 16, no. 4, pp. 1950013, Aug. 2019. doi: 10.1142/S0219843619500130
    [65]
    U. C. Allard, F. Nougarou, C. L. Fall, P. Giguère, C. Gosselin, F. Laviolette, and B. Gosselin, “A convolutional neural network for robotic arm guidance using sEMG based frequency-features,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Daejeon, South Korea, 2016, pp. 2464−2470.
    [66]
    Y. Yamanoi and R. Kato, “Control method for myoelectric hand using convolutional neural network to simplify learning of EMG signals,” in Proc. IEEE Int. Conf. Cyborg and Bionic Systems, Beijing, China, 2017, pp. 114−118.
    [67]
    L. Chen, J. T. Fu, Y. H. Wu, H. C. Li, and B. Zheng, “Hand gesture recognition using compact CNN via surface electromyography signals,” Sensors, vol. 20, no. 3, pp. 672, Jan. 2020. doi: 10.3390/s20030672
    [68]
    A. David Orjuela-Cañón, A. F. Ruíz-Olaya, and L. Forero, “Deep neural network for EMG signal classification of wrist position: Preliminary results,” in Proc. IEEE Latin American Conf. Computational Intelligence, Arequipa, Peru, 2017, pp. 1−5.
    [69]
    K. Asai and N. Takase, “Finger motion estimation based on frequency conversion of EMG signals and image recognition using convolutional neural network,” in Proc. 17th Int. Conf. Control, Autom. and Systems, Jeju, South Korea, 2017, pp. 1366−1371.
    [70]
    J. L. Ren, Y. H. Chien, E. Y. Chia, L. C. Fu, and J. S. Lai, “Deep learning based motion prediction for exoskeleton robot control in upper limb rehabilitation,” in Proc. IEEE Int. Conf. Robotics and Autom., Montreal, Canada, 2019, pp. 5076−5082.
    [71]
    N. Naseer, F. Ali, S. Ahmed, S. Iftikhar, R. A. Khan, and H. Nazeer, “EMG based control of individual fingers of robotic hand,” in Proc. 3rd Int. Conf. Sustainable Information Engineering and Technology, Malang, Indonesia, 2018, pp. 6−9.
    [72]
    P. Koch, H. Phan, M. Maass, F. Katzberg, R. Mazur, and A. Mertins, “Recurrent neural networks with weighting loss for early prediction of hand movements,” in Proc. 26th European Signal Processing Conf., Rome, Italy, 2018, pp. 1152−1156.
    [73]
    H. M. Shim, H. An, S. Lee, E. H. Lee, H. K. Min, and S. Lee, “EMG pattern classification by split and merge deep belief network,” Symmetry, vol. 8, no. 12, pp. 148, Dec. 2016. doi: 10.3390/sym8120148
    [74]
    A. K. Mukhopadhyay and S. Samui, “An experimental study on upper limb position invariant EMG signal classification based on deep neural network,” Biomed. Signal Process. Control, vol. 55, pp. 101669, Jan. 2020. doi: 10.1016/j.bspc.2019.101669
    [75]
    A. K. Mukhopadhyay, I. Chakrabarti, and M. Sharad, “Classification of hand movements by surface myoelectric signal using artificial-spiking neural network model,” in Proc. IEEE SENSORS, New Delhi, India, 2018, pp. 419−422.
    [76]
    P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras, “A hilbert curve based representation of sEMG signals for gesture recognition,” in Proc. Int. Conf. Systems, Signals and Image Processing, Osijek, Croatia, 2019, pp. 201−206.
    [77]
    L. Z. Bi, A. G. Feleke, and C. T. Guan, “A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration,” Biomed. Signal Process. Control, vol. 51, pp. 113–127, May 2019. doi: 10.1016/j.bspc.2019.02.011
    [78]
    D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and O. C. Aszmann, “The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp. 797–809, Jul. 2014. doi: 10.1109/TNSRE.2014.2305111
    [79]
    K. H. Park and S. W. Lee, “Movement intention decoding based on deep learning for multiuser myoelectric interfaces,” in Proc. 4th Int. Winter Conf. Brain-Computer Interface, Yongpyong, South Korea, 2016.
    [80]
    P. Tsinganos, B. Cornelis, J. Cornelis, B. Jansen, and A. Skodras, “Improved gesture recognition based on sEMG signals and TCN,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019, pp. 1169−1173.
    [81]
    M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti, and L. Benini, “Robust real-time embedded EMG recognition framework using temporal convolutional networks on a multicore IoT processor,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 2, pp. 244–256, Apr. 2020. doi: 10.1109/TBCAS.2019.2959160
    [82]
    M. Atzori, M. Cognolato, and H. Müeller, “Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands,” Front. Neurorobot., vol. 10, pp. 9, Sep. 2016.
    [83]
    X. L. Zhai, B. Jelfs, R. H. M. Chan, and C. Tin, “Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network,” Front. Neurosci., vol. 11, pp. 379, Jul. 2017. doi: 10.3389/fnins.2017.00379
    [84]
    J. C. Chen, S. Bi, G. Zhang, and G. Z. Cao, “High-density surface EMG-based gesture recognition using a 3D convolutional neural network,” Sensors, vol. 20, no. 4, pp. 1201, Feb. 2020. doi: 10.3390/s20041201
    [85]
    Y. Yamanoi, Y. Ogiri, and R. Kato, “EMG-based posture classification using a convolutional neural network for a myoelectric hand,” Biomed. Signal Process. Control, vol. 55, pp. 101574, Jan. 2020. doi: 10.1016/j.bspc.2019.101574
    [86]
    M. Simão, P. Neto, and O. Gibaru, “EMG-based online classification of gestures with recurrent neural networks,” Pattern Recogn. Lett., vol. 128, pp. 45–51, Dec. 2019. doi: 10.1016/j.patrec.2019.07.021
    [87]
    A. Samadani, “Gated recurrent neural networks for EMG-based hand gesture classification. A comparative study,” in Proc. 40th Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Honolulu, USA, 2018, pp. 1−4.
    [88]
    M. Alfaro-Ponce and I. Chairez, “Continuous and recurrent pattern dynamic neural networks recognition of electrophysiological signals,” Biomed. Signal Process. Control, vol. 57, pp. 101783, Mar. 2020. doi: 10.1016/j.bspc.2019.101783
    [89]
    M. Z. U. Rehman, S. O. Gilani, A. Waris, I. K. Niazi, G. Slabaugh, D. Farina, and E. N. Kamavuako, “Stacked sparse autoencoders for EMG-based classification of hand motions: A comparative multi day analyses between surface and intramuscular EMG,” Appl. Sci., vol. 8, no. 7, pp. 1126, Jul. 2018. doi: 10.3390/app8071126
    [90]
    M. Z. U. Rehman, A. Waris, S. O. Gilani, M. Jochumsen, I. K. Niazi, M. Jamil, D. Farina, and E. N. Kamavuako, “Multiday EMG-based classification of hand motions with deep learning techniques,” Sensors, vol. 18, no. 8, Aug. 2018.
    [91]
    J. H. Zhang, C. Ling, and S. N. Li, “EMG signals based human action recognition via deep belief networks,” IFAC-PapersOnline, vol. 52, no. 19, pp. 271–276, Sep. 2019. doi: 10.1016/j.ifacol.2019.12.108
    [92]
    S. Lee, M. Sung, and Y. Choi, “Wearable fabric sensor for controlling myoelectric hand prosthesis via classification of foot postures,” Smart Mater. Struct., vol. 29, no. 3, pp. 035004, Mar. 2020. doi: 10.1088/1361-665X/ab6690
    [93]
    T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield, P. D. Marasco, P. Zhou, and G. A. Dumanian, “Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study,” Lancet, vol. 369, no. 9559, pp. 371–380, Feb. 2007. doi: 10.1016/S0140-6736(07)60193-7
    [94]
    J. K. Shao, Y. F. Niu, C. Q. Xue, Q. Wu, X. Z. Zhou, Y. Xie, and X. L. Zhao, “Single-channel SEMG using wavelet deep belief networks for upper limb motion recognition,” Int. J. Ind. Ergon., vol. 76, pp. 102905, Mar. 2020. doi: 10.1016/j.ergon.2019.102905
    [95]
    R. M. Luo, S. Q. Sun, X. F. Zhang, Z. C. Tang, and W. D. Wang, “A low-cost end-to-end sEMG-based gait sub-phase recognition system,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 267–276, Jan. 2020. doi: 10.1109/TNSRE.2019.2950096
    [96]
    A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “Real-time, simultaneous myoelectric control using a convolutional neural network,” PLoS One, vol. 13, no. 9, pp. e0203835, Sep. 2018. doi: 10.1371/journal.pone.0203835
    [97]
    J. H. Wang, L. Qi, and X. Wang, “Surface EMG signals based motion intent recognition using multi-layer ELM,” in Proc. SPIE 10605, LIDAR Imaging Detection and Target Recognition, Changchun, China, 2017.
    [98]
    A. Olsson, N. Malešević, A. Björkman, and C. Antfolk, “Exploiting the intertemporal structure of the upper-limb sEMG: Comparisons between an LSTM network and cross-sectional myoelectric pattern recognition methods,” in Proc. 41st Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 2019, pp. 6611−6615.
    [99]
    Y. Hu, Y. Wong, W. T. Wei, Y. Du, M. Kankanhalli, and W. D. Geng, “A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition,” PLoS One, vol. 13, no. 10, pp. e0206049, Oct. 2018. doi: 10.1371/journal.pone.0206049
    [100]
    R. Akhundov, D. J. Saxby, S. Edwards, S. Snodgrass, P. Clausen, and L. E. Diamond, “Development of a deep neural network for automated electromyographic pattern classification,” J. Exp. Biol., vol. 222, pp. jeb198101, Mar. 2019. doi: 10.1242/jeb.198101
    [101]
    E. A. Clancy, L. K. Liu, P. Liu, and D. V. Z. Moyer, “Identification of constant-posture EMG – torque relationship about the elbow using nonlinear dynamic models,” IEEE Trans. Biomed. Eng., vol. 59, no. 1, pp. 205–212, Jan. 2012. doi: 10.1109/TBME.2011.2170423
    [102]
    Q. C. Ding, J. D. Han, and X. G. Zhao, “Continuous estimation of human multi-joint angles from sEMG using a state-space model,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 9, pp. 1518–1528, Sep. 2017. doi: 10.1109/TNSRE.2016.2639527
    [103]
    J. D. Han, Q. C. Ding, A. B. Xiong, and X. G. Zhao, “A state-space EMG model for the estimation of continuous joint movements,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4267–4275, Jul. 2015. doi: 10.1109/TIE.2014.2387337
    [104]
    W. Meng, B. Ding, Z. D. Zhou, Q. Liu, and Q. S. Ai, “An EMG-based force prediction and control approach for robot-assisted lower limb rehabilitation,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, San Diego, USA, 2014, pp. 2198−2203.
    [105]
    D. Xiong, D. Zhang, X. Zhao, and Y. Zhao, “Continuous human gait tracking using sEMG signals,” in Proc. 42nd IEEE Annu. Int. Conf. Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 2020, pp. 3094–3097
    [106]
    Z. Li, D. H. Zhang, X. G. Zhao, F. Y. Wang, B. Zhang, D. Ye, and J. D. Han, “A temporally smoothed MLP regression scheme for continuous knee/ankle angles estimation by using multi-channel sEMG,” IEEE Acc., vol. 8, pp. 47433–47444, Mar. 2020. doi: 10.1109/ACCESS.2020.2979008
    [107]
    I. Sosin, D. Kudenko, and A. Shpilman, “Continuous gesture recognition from sEMG sensor data with recurrent neural networks and adversarial domain adaptation,” in Proc. 15th Int. Conf. Control, Autom., Robotics and Vision, Singapore, 2018, pp. 1436−1441.
    [108]
    T. A. Teban, R. E. Precup, E. C. Lunca, A. Albu, C. A. Bojan-Dragos, and E. M. Petriu, “Recurrent neural network models for myoelectric-based control of a prosthetic hand,” in Proc. 22nd Int. Conf. System Theory, Control and Computing, 2018, pp. 603−608.
    [109]
    P. Xia, J. Hu, and Y. H. Peng, “EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks,” Artif. Organs, vol. 42, no. 5, pp. E67–E77, May 2018. doi: 10.1111/aor.13004
    [110]
    Y. C. Huang, Z. X. He, Y. X. Liu, R. Y. Yang, X. F. Zhang, G. Cheng, J. G. Yi, J. P. Ferreira, and T. Liu, “Real-time intended knee joint motion prediction by deep-recurrent neural networks,” IEEE Sens. J., vol. 19, no. 23, pp. 11503–11509, Dec. 2019. doi: 10.1109/JSEN.2019.2933603
    [111]
    A. Gautam, M. Panwar, D. Biswas, and A. Acharyya, “MyoNet: A transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG,” IEEE J. Trans. Eng. Health Med., vol. 8, pp. 2100310, Feb. 2020.
    [112]
    V. T. Inman, H. J. Ralston, J. De C M Saunders, M. B. Feinstein, and E. W. Wright Jr., “Relation of human electromyogram to muscular tension,” Electroencephalogr. Clin. Neurophysiol., vol. 4, no. 2, pp. 187–194, May 1952. doi: 10.1016/0013-4694(52)90008-4
    [113]
    D. Staudenmann, K. Roeleveld, D. F. Stegeman, and J. H. van Dieen, “Methodological aspects of SEMG recordings for force estimation—A tutorial and review,” J. Electromyogr. Kinesiol., vol. 20, no. 3, pp. 375–387, Jun. 2010. doi: 10.1016/j.jelekin.2009.08.005
    [114]
    A. G. Noughaby and G. R. Vossoughi, “The control of an exoskeleton and the reduction of interaction force using human intent detection by EMG signals and torque estimation,” in Proc. 6th RSI Int. Conf. Robotics and Mechatronics, Tehran, Iran, 2018, pp. 536−541.
    [115]
    E. E. Cavallaro, J. Rosen, J. C. Perry, and S. Burns, “Real-time myoprocessors for a neural controlled powered exoskeleton arm,” IEEE Trans. Biomed. Eng., vol. 53, no. 11, pp. 2387–2396, Nov. 2006. doi: 10.1109/TBME.2006.880883
    [116]
    J. M. Winters, “Hill-based muscle models: A systems engineering perspective,” in Multiple Muscle Systems: Biomechanics and Movement Organization, J. M. Winters and S. L. Y. Woo, Eds. New York: Springer, 1990, pp. 69−93.
    [117]
    X. Zhang, D. Q. Wang, Z. Y. Yu, X. Chen, S. Li, and P. Zhou, “EMG-torque relation in chronic stroke: A novel EMG complexity representation with a linear electrode array,” IEEE J. Biomed. Health Inform., vol. 21, no. 6, pp. 1562–1572, Nov. 2017. doi: 10.1109/JBHI.2016.2626399
    [118]
    P. Liu, L. K. Liu, and E. A. Clancy, “Influence of joint angle on EMG-torque model during constant-posture, torque-varying contractions,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 6, pp. 1039–1046, Nov. 2015. doi: 10.1109/TNSRE.2015.2405765
    [119]
    Q. J. Song, B. Y. Sun, J. H. Lei, Z. Gao, Y. Yu, M. Liu, and Y. J. Ge, “Prediction of human elbow torque from EMG using SVM based on AWR information acquisition platform,” in Proc. IEEE Int. Conf. Information Acquisition, Weihai, China, 2006, pp. 1274−1278.
    [120]
    R. C. Hu, X. Chen, S. Cao, X. Zhang, and X. Chen, “Investigation on the contributions of different muscles to the generated force based on HD-sEMG and DBN,” in Proc. 41st Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, Berlin, Germany, 2019, pp. 2645−2648.
    [121]
    L. F. Xu, X. Chen, S. Cao, X. Zhang, and X. Chen, “Feasibility study of advanced neural networks applied to sEMG-based force estimation,” Sensors, vol. 18, no. 10, pp. 3226, Sep. 2018. doi: 10.3390/s18103226
    [122]
    C. J. Li, J. Ren, H. Q. Huang, B. Wang, Y. F. Zhu, and H. S. Hu, “PCA and deep learning based myoelectric grasping control of a prosthetic hand,” Biomed. Eng. Online, vol. 17, no. 1, pp. 107, Aug. 2018. doi: 10.1186/s12938-018-0539-8
    [123]
    W. Yang, D. P. Yang, Y. Liu, and H. Liu, “Decoding simultaneous multi-DOF wrist movements from raw EMG signals using a convolutional neural network,” IEEE Trans. Human-Mach. Syst., vol. 49, no. 5, pp. 411–420, Oct. 2019. doi: 10.1109/THMS.2019.2925191
    [124]
    W. Yang, D. P. Yang, J. M. Li, Y. Liu, and H. Liu, “EMG dataset augmentation approaches for improving the multi-DOF wrist movement regression accuracy and robustness,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Kuala Lumpur, Malaysia, 2018, pp. 1268−1273.
    [125]
    Y. Ban, “Estimating the direction of force applied to the grasped object using the surface EMG,” in Proc. 11th Int. Conf. Haptics: Science, Technology, and Applications, Pisa, Italy, 2018, pp. 226−238.
    [126]
    M. Yokoyama, R. Koyama, and M. Yanagisawa, “An evaluation of hand-force prediction using artificial neural-network regression models of surface EMG signals for handwear devices,” J. Sens., vol. 2017, pp. 3980906, Oct. 2017.
    [127]
    Y. Y. Chen, C. Y. Dai, and W. Chen, “Cross-comparison of EMG-to-force methods for multi-DoF finger force prediction using one-DoF training,” IEEE Acc., vol. 8, pp. 13958–13968, Jan. 2020. doi: 10.1109/ACCESS.2020.2966007
    [128]
    Y. Yu, C. Chen, X. J. Sheng, and X. Y. Zhu, “Continuous estimation of wrist torques with stack-autoencoder based deep neural network: A preliminary study,” in Proc. 9th Int. IEEE/EMBS Conf. Neural Engineering, San Francisco, USA, 2019, pp. 473−476.
    [129]
    Y. Yu, C. Chen, X. J. Sheng, and X. Y. Zhu, “Multi-DoF continuous estimation for wrist torques using stacked autoencoder,” Biomed. Signal Process. Control, vol. 57, pp. 101733, Mar. 2020. doi: 10.1016/j.bspc.2019.101733
    [130]
    Z. Y. Qin, Z. Y. Jiang, J. S. Chen, C. H. Hu, and Y. Ma, “sEMG-based tremor severity evaluation for Parkinson’s disease using a light-weight CNN,” IEEE Signal Process. Lett., vol. 26, no. 4, pp. 637–641, Apr. 2019. doi: 10.1109/LSP.2019.2903334
    [131]
    A. Sengur, Y. Akbulut, Y. Guo, and V. Bajaj, “Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm,” Health Inf. Sci. Syst., vol. 5, no. 1, pp. 9, Oct. 2017. doi: 10.1007/s13755-017-0029-6
    [132]
    X. G. Liu, H. L. Li, C. G. Lou, T. Liang, X. L. Liu, and H. R. Wang, “A new approach to fall detection based on improved dual parallel channels convolutional neural network,” Sensors, vol. 19, no. 12, pp. 2814, Jun. 2019. doi: 10.3390/s19122814
    [133]
    S. Morikawa, S. I. Ito, M. Ito, and M. Fukumi, “Personal authentication by lips EMG using dry electrode and CNN,” in Proc. IEEE Int. Conf. Internet of Things and Intelligence System, Bali, Indonesia, 2018, pp. 180−183.
    [134]
    I. A. Khowailed and A. Abotabl, “Neural muscle activation detection: A deep learning approach using surface electromyography,” J. Biomech., vol. 95, pp. 109322, Oct. 2019. doi: 10.1016/j.jbiomech.2019.109322
    [135]
    P. Wang, E. L. Tan, Y. L. Jin, L. Li, and J. Wang, “Prediction of EMG signal on missing channel from signal captured from other related channels via deep neural network,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Kuala Lumpur, Malaysia, 2018, pp. 1287−1291.
    [136]
    H. Nodera, Y. Osaki, H. Yamazaki, A. Mori, Y. Izumi, and R. Kaji, “Deep learning for waveform identification of resting needle electromyography signals,” Clin. Neurophysiol., vol. 130, no. 5, pp. 617–623, May 2019. doi: 10.1016/j.clinph.2019.01.024
    [137]
    S. Nam, M. K. Sohn, H. A. Kim, H. J. Kong, and I. Y. Jung, “Development of artificial intelligence to support needle electromyography diagnostic analysis,” Healthc. Inform. Res., vol. 25, no. 2, pp. 131–138, Apr. 2019. doi: 10.4258/hir.2019.25.2.131
    [138]
    D. Ramachandram and G. W. Taylor, “Deep multimodal learning: A survey on recent advances and trends,” IEEE Signal Process. Mag., vol. 34, no. 6, pp. 96–108, Nov. 2017. doi: 10.1109/MSP.2017.2738401
    [139]
    Y. Yu, X. Chen, S. Cao, X. Zhang, and X. Chen, “Exploration of Chinese sign language recognition using wearable sensors based on deep belief net,” IEEE J. Biomedical and Health Informatics, vol. 24, no. 5, pp. 1310–1320, May 2020. doi: 10.1109/JBHI.2019.2941535
    [140]
    F. Wang, S. S. Zhao, X. Q. Zhou, C. Li, M. Y. Li, and Z. Zeng, “An recognition-verification mechanism for real-time Chinese sign language recognition based on multi-information fusion,” Sensors, vol. 11, pp. 2495, May 2019.
    [141]
    S. Shin, Y. Baek, J. Lee, Y. Eun, and S. H. Son, “Korean sign language recognition using EMG and IMU sensors based on group-dependent NN models,” in Proc. IEEE Symp. Series on Computational Intelligence, Honolulu, USA, 2017, pp. 1770−1776.
    [142]
    Q. Zhang, D. Wang, R. Zhao, and Y. G. Yu, “MyoSign: Enabling end-to-end sign language recognition with wearables,” in Proc. 24th Int. Conf. Intelligent User Interfaces, Marina del Ray, USA, 2019, pp. 650−660.
    [143]
    W. M. Wang, B. Chen, P. Xia, J. Hu, and Y. H. Peng, “Sensor fusion for myoelectric control based on deep learning with recurrent convolutional neural networks,” Artif. Organs, vol. 42, no. 9, pp. E272–E282, Sep. 2018. doi: 10.1111/aor.13153
    [144]
    C. W. Yeh, T. Y. Pan, and M. C. Hu, “A sensor-based official basketball referee signals recognition system using deep belief networks,” in Proc. 23rd Int. Conf. Multimedia Modeling, Reykjavik, Iceland, 2017, pp. 565−575.
    [145]
    J. Lopes, M. Simão, N. Mendes, M. Safeea, J. Afonso, and P. Neto, “Hand/arm gesture segmentation by motion using IMU and EMG sensing,” Proced. Manuf., vol. 11, pp. 107–113, 2017. doi: 10.1016/j.promfg.2017.07.158
    [146]
    X. L. Zhang, Z. Q. Yang, T. Y. Chen, D. L. Chen, and M. C. Huang, “Cooperative sensing and wearable computing for sequential hand gesture recognition,” IEEE Sens. J., vol. 19, no. 14, pp. 5775–5783, Jul. 2019. doi: 10.1109/JSEN.2019.2904595
    [147]
    Q. Gao, J. G. Liu, and Z. J. Ju, “Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human-robot interaction,” Expert Systems. DOI: 10.1111/exsy.12490, Jan. 2020.
    [148]
    Z. Y. Li, H. Zhou, D. D. Yang, and S. Q. Xie, “Multimodal deep learning network based hand ADLs tasks classification for prosthetics control,” in Proc. Int. Conf. Progress in Informatics and Computing, Nanjing, China, 2017, pp. 91−95.
    [149]
    M. S. Elmahdy and A. A. Morsy, “Subvocal speech recognition via close-talk microphone and surface electromyogram using deep learning,” in Proc. Federated Conf. Computer Science and Information Systems, Prague, Czech, 2017, pp. 165−168.
    [150]
    G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie, X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra, “Unsupervised and transfer learning challenge: A deep learning approach,” in Proc. Int. Conf. Unsupervised and Transfer Learning Workshop, Bellevue, USA, 2012, pp. 97−110.
    [151]
    J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?” in Proc. 27th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2014, pp. 3320−3328.
    [152]
    K. T. Kim, C. T. Guan, and S. W. Lee, “A subject-transfer framework based on single-trial EMG analysis using convolutional neural networks,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 1, pp. 94–103, Jan. 2020. doi: 10.1109/TNSRE.2019.2946625
    [153]
    Y. H. Li, N. Y. Wang, J. P. Shi, X. D. Hou, and J. Y. Liu, “Adaptive batch normalization for practical domain adaptation,” Pattern Recogn., vol. 80, pp. 109–117, Aug. 2008.
    [154]
    U. Côté-Allard, G. Gagnon-Turcotte, A. Phinyomark, K. Glette, E. J. Scheme, F. Laviolette, and B. Gosselin, “Unsupervised domain adversarial self-calibration for electromyography-based gesture recognition,” IEEE Acc., vol. 8, pp. 177941–177955, Sep. 2020. doi: 10.1109/ACCESS.2020.3027497
    [155]
    U. Côté-Allard, C. L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin, K. Glette, F. Laviolette, and B. Gosselin, “Deep learning for electromyographic hand gesture signal classification using transfer learning,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 760–771, Apr. 2019. doi: 10.1109/TNSRE.2019.2896269
    [156]
    U. Côté-Allard, C. L. Fall, A. Campeau-Lecours, C. Gosselin, F. Laviolette, and B. Gosselin, “Transfer learning for sEMG hand gestures recognition using convolutional neural networks,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Banff, AB, Canada, 2017, pp. 1663−1668.
    [157]
    A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv: 1606.04671, 2016. [Online]. Available: https://arxiv.org/abs/1606.04671
    [158]
    U. Côté-Allard, E. Campbell, A. Phinyomark, F. Laviolette, B. Gosselin, and E. Scheme, “Interpreting deep learning features for myoelectric control: A comparison with handcrafted features,” Front. Bioeng. Biotechnol., vol. 8, pp. 158, Mar. 2020. doi: 10.3389/fbioe.2020.00158
    [159]
    F. Demir, V. Bajaj, M. C. Ince, S. Taran, and A. Şengür, “Surface EMG signals and deep transfer learning-based physical action classification,” Neural Comput. Appl., vol. 31, no. 12, pp. 8455–8462, Dec. 2019. doi: 10.1007/s00521-019-04553-7
    [160]
    M. A. Powell, R. R. Kaliki, and N. V. Thakor, “User training for pattern recognition-based myoelectric prostheses: Improving phantom limb movement consistency and distinguishability,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 3, pp. 522−532, May 2014.
    [161]
    J. Y. He, D. G. Zhang, N. Jiang, X. J. Sheng, D. Farina, and X. Y. Zhu, “User adaptation in long-term, open-loop myoelectric training: Implications for EMG pattern recognition in prosthesis control,” J. Neural Eng., vol. 12, no. 4, pp. 046005, Aug. 2015. doi: 10.1088/1741-2560/12/4/046005
    [162]
    C. Maufroy and D. Bargmann, “CNN-based detection and classification of grasps relevant for worker support scenarios using sEMG signals of forearm muscles,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, Miyazaki, Japan, 2018, pp. 141−146.
    [163]
    M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, and B. Y. Edward, “Capsule networks—A survey,” J. King Saud Univ.–Comput. Inf. Sci. DOI: 10.1016/j.jksuci.2019.09.014, Sep. 2019.
    [164]
    Q. C. Ding, Z. Y. Li, X. G. Zhao, Y. F. Xiao, and J. D. Han, “Real-time myoelectric prosthetic-hand control to reject outlier motion interference using one-class classifier,” in Proc. 32nd Youth Academic Annu. Conf. Chinese Association of Autom., Hefei, China, 2017, pp. 96−101.
    [165]
    L. Hargrove, K. Englehart, and B. Hudgins, “The effect of electrode displacements on pattern recognition based myoelectric control,” in Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, New York, USA, 2016, pp. 2203−2206.
    [166]
    M. M. C. Vidovic, H. J. Hwang, S. Amsüss, J. M. Hahne, D. Farina, and K. R. Müller, “Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 9, pp. 961–970, Sep. 2016. doi: 10.1109/TNSRE.2015.2492619
    [167]
    J. W. Liu, X. J. Sheng, D. G. Zhang, J. Y. He, and X. Y. Zhu, “Reduced daily recalibration of myoelectric prosthesis classifiers based on domain adaptation,” IEEE J. Biomed. Health Inform., vol. 20, no. 1, pp. 166–176, Jan. 2016. doi: 10.1109/JBHI.2014.2380454
    [168]
    X. Y. Zhu, J. W. Liu, D. G. Zhang, X. J. Sheng, and N. Jiang, “Cascaded adaptation framework for fast calibration of myoelectric control,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 3, pp. 254–264, Mar. 2017. doi: 10.1109/TNSRE.2016.2562180
    [169]
    H. Dantas, D. J. Warren, S. M. Wendelken, T. S. Davis, G. A. Clark, and V. J. Mathews, “Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control,” IEEE Trans. Biomed. Eng., vol. 66, no. 11, pp. 3192–3203, Nov. 2019. doi: 10.1109/TBME.2019.2901882
    [170]
    Y. Yu, X. J. Sheng, W. C. Guo, and X. Y. Zhu, “Attenuating the impact of limb position on surface EMG pattern recognition using a mixed-LDA classifier,” in Proc. IEEE Int. Conf. Robotics and Biomimetics, Macau, China, 2017, pp. 1497−1502.
    [171]
    M. R. Al-Mulla, F. Sepulveda, and M. Colley, “A review of non-invasive techniques to detect and predict localised muscle fatigue,” Sensors, vol. 11, no. 4, pp. 3545–3594, Mar. 2011. doi: 10.3390/s110403545
    [172]
    Y. Su, S. L. Sun, Y. Ozturk, and M. Tian, “Measurement of upper limb muscle fatigue using deep belief networks,” J. Mechanics in Medicine and Biology, vol. 16, no. 8, pp. 1640032, Sep. 2016. doi: 10.1142/S0219519416400327
    [173]
    N. Nasri, F. Gomez-Donoso, S. Orts-Escolano, and M. Cazorla, “Using inferred gestures from sEMG signal to teleoperate a domestic robot for the disabled,” in Proc. 15th Int. Work-Conf. Artificial Neural Networks Computational Intelligence, Gran Canaria, Spain, 2019, pp. 198−207.
    [174]
    Y. F. Wan, Z. S. Han, J. Zhong, and G. H. Chen, “Pattern recognition and bionic manipulator driving by surface electromyography signals using convolutional neural network,” Int. J. Adv. Rob. Syst., vol. 15, no. 5, Oct. 2018.
    [175]
    D. V. Redrovan and D. Kim, “Hand gestures recognition using machine learning for control of multiple quadrotors,” in Proc. IEEE Sensors Applications Symp., Seoul, South Korea, 2018, pp. 394−399.
    [176]
    N. Mendes, M. Simão, and P. Neto, “Segmentation of electro- myography signals for pattern recognition,” in Proc. 45th Annu. Conf. IEEE Industrial Electronics Society, Lisbon, Portugal, 2019, pp. 732−737.
    [177]
    E. Donati, M. Payvand, N. Risi, R. Krause, K. Burelo, G. Indiveri, T. Dalgaty, and E. Vianello, “Processing EMG signals using reservoir computing on an event-based neuromorphic system,” in Proc. IEEE Biomedical Circuits and Systems Conf., Cleveland, USA, 2018, pp. 455−458.
    [178]
    V. Gregori, M. Cognolato, G. Saetta, M. Atzori, The MeganePro Consortium, and A. Gijsberts, “On the visuomotor behavior of amputees and able-bodied people during grasping,” Front. Bioeng. Biotechnol., vol. 7, pp. 316, Nov. 2019. doi: 10.3389/fbioe.2019.00316
    [179]
    C. Chen, Y. Yu, S. H. Ma, X. J. Sheng. C. Lin, D. Farina, and X. Y. Zhu, “Hand gesture recognition based on motor unit spike trains decoded from high-density electromyography,” Biomed. Signal Process. Control, vol. 55, pp. 101637, Jan. 2020. doi: 10.1016/j.bspc.2019.101637
    [180]
    C. Chen, G. H. Chai, W. C. Guo, X. J. Sheng, D. Farina, and X. Y. Zhu, “Prediction of finger kinematics from discharge timings of motor units: Implications for intuitive control of myoelectric prostheses,” J. Neural Eng., vol. 16, no. 2, pp. 026005, Apr. 2019. doi: 10.1088/1741-2552/aaf4c3
    [181]
    A. B. Xiong, D. H. Zhang, X. G. Zhao, J. D. Han, and G. J. Liu, “Classification of gesture based on sEMG decomposition: A preliminary study,” IFAC Proc. Vol., vol. 47, no. 3, pp. 2969–2974, Aug. 2014. doi: 10.3182/20140824-6-ZA-1003.01404
    [182]
    A. B. Xiong, X. G. Zhao, J. Han, G. J. Liu, and Q. C. Ding, “An user-independent gesture recognition method based on sEMG decomposition,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Hamburg, Germany, 2015, pp. 4185−4190.
    [183]
    D. Farina, I. Vujaklija, M. Sartori, T. Kapelner, F. Negro, N. Jiang, K. Bergmeister, A. Andalib, J. Principe, and O. C. Aszmann, “Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation,” Nat. Biomed. Eng., vol. 1, no. 2, pp. 0025, Feb. 2017. doi: 10.1038/s41551-016-0025
    [184]
    Z. H. Wu, S. R. Pan, F. W. Chen, G. D. Long, C. Q. Zhang, and P. S. Yu, “A comprehensive survey on graph neural networks,” IEEE Trans. Neural Networks and Learning Systems. DOI: 10.1109/TNNLS.2020.2978386, Mar. 2020.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article views (1372) PDF downloads(145) Cited by()

    Highlights

    • This paper attempts to provide a literature review of deep learning in EMG pattern recognition tasks for human-machine interaction. We want to offer a comprehensive analysis of current research, which is the first time to the best of we can know.
    • This work will discuss traditional topics like movement classification, joint angle prediction, and force/torque estimation and the latest issues like inter-session/subject, robustness under non-ideal conditions, multimodal sensors fusion, and the applications in physical systems.
    • The advantages, challenges, and opportunities to solve EMG recognition questions through deep learning will be analyzed. Moreover, four future directions that we believe are important for future development will be covered to pave the way for future research.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return