IEEE/CAA Journal of Automatica Sinica
Citation:  Zhao Gao, Jiahu Qin, Shuai Wang and Yaonan Wang, "Boundary Gap Based Reactive Navigation in Unknown Environments," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 468477, Feb. 2021. doi: 10.1109/JAS.2021.1003841 
[1] 
S. McLeod and J. Xiao, “Navigating dynamically unknown environments leveraging past experience,” in Proc. Int. Conf. on Robotics and Automation (ICRA), IEEE, 2019, pp. 29–35.

[2] 
J. Minguez and L. Montano, “Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios,” IEEE Trans. Robotics and Automation, vol. 20, no. 1, pp. 45–59, 2004. doi: 10.1109/TRA.2003.820849

[3] 
N. Wen, L. Zhao, X. Su, and P. Ma, “Uav online path planning algorithm in a low altitude dangerous environment,” IEEE/CAA Journal of Automatica Sinica, vol. 2, no. 2, pp. 173–185, 2015. doi: 10.1109/JAS.2015.7081657

[4] 
W. Zheng, F. Zhou, and Z. Wang, “Robust and accurate monocular visual navigation combining imu for a quadrotor,” IEEE/CAA Journal of Automatica Sinica, vol. 2, no. 1, pp. 33–44, 2015. doi: 10.1109/JAS.2015.7032904

[5] 
A. Ataka, H. K. Lam, and K. Althoefer, “Reactive magneticfieldinspired navigation for nonholonomic mobile robots in unknown environments,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2018, pp. 6983–6988.

[6] 
O. Khatib, “Realtime obstacle avoidance for manipulators and mobile robots,” in Autonomous Robot Vehicles, Springer, 1986, pp. 396–404.

[7] 
Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations for mobile robot navigation,” in Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, 1991, pp. 1398–1404.

[8] 
K. P. Valavanis, T. Hebert, R. Kolluru, and N. Tsourveloudis, “Mobile robot navigation in 2D dynamic environments using an electrostatic potential field,” IEEE Trans. Systems,Man,and CyberneticsPart A:Systems and Humans, vol. 30, no. 2, pp. 187–196, 2000. doi: 10.1109/3468.833100

[9] 
W. Lu, G. Zhang, and S. Ferrari, “An information potential approach to integrated sensor path planning and control,” IEEE Trans. Robotics, vol. 30, no. 4, pp. 919–934, 2014. doi: 10.1109/TRO.2014.2312812

[10] 
A. R. Rafsanzani, R. C. Hidayat, A. I. Cahyadi, and S. Herdjunanto, “Omnidirectional sensing for escaping local minimum on potential field mobile robot path planning in corridors environment,” in Proc. 3rd Int. Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), IEEE, 2018, pp. 79–83.

[11] 
T. Chen and Y. Huang, “Nontrap artificial potential field based on virtual obstacle,” in Proc. IEEE 16th Int. Conf. on Networking, Sensing and Control (ICNSC), IEEE, 2019, pp. 275–280.

[12] 
T. Y. Abdalla, A. A. Abed, and A. A. Ahmed, “Mobile robot navigation using psooptimized fuzzy artificial potential field with fuzzy control,” Journal of Intelligent &Fuzzy Systems, vol. 32, no. 6, pp. 3893–3908, 2017.

[13] 
V. Lumelsky and A. Stepanov, “Dynamic path planning for a mobile automaton with limited information on the environment,” IEEE Transactions on Automatic Control, vol. 31, no. 11, pp. 1058–1063, 1986. doi: 10.1109/TAC.1986.1104175

[14] 
N. Sharma, S. Thukral, S. Aine, and P. Sujit, “A virtual bug planning technique for 2d robot path planning,” in Proc. Annual American Control Conf. (ACC), IEEE, 2018, pp. 5062–5069.

[15] 
A. K. Dutta, S. K. Debnath, and S. K. Das, “Local path planning of mobile robot using criticalpointbug algorithm avoiding static obstacles,” Int. Journal of Robotics and Automation, vol. 5, no. 3, pp. 182–187, 2016.

[16] 
Q. L. Xu, T. Yu, and J. Bai, “The mobile robot path planning with motion constraints based on bug algorithm,” in Proc. Chinese Automation Congress (CAC), IEEE, 2017, pp. 2348–2352.

[17] 
N. Buniyamin, W. W. Ngah, N. Sariff, and Z. Mohamad, “A simple local path planning algorithm for autonomous mobile robots,” Int. Journal of Systems Applications,Engineering &Development, vol. 5, no. 2, pp. 151–159, 2011.

[18] 
J. W. Durham and F. Bullo, “Smooth nearnessdiagram navigation,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IEEE, 2008, pp. 690–695.

[19] 
M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest gap based (CG) reactive obstacle avoidance navigation for highly cluttered environments,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IEEE, 2010, pp. 1805–1812.

[20] 
M. Mujahed, D. Fischer, and B. Mertsching, “Admissible gap navigation: A new collision avoidance approach,” Robotics and Autonomous Systems, vol. 103, pp. 93–110, 2018. doi: 10.1016/j.robot.2018.02.008

[21] 
M. Mujahed and B. Mertsching, “The admissible gap (AG) method for reactive collision avoidance,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, 2017, pp. 1916–1921.

[22] 
M. Mujahed, D. Fischer, and B. Mertsching, “Tangential gap flow (TGF) navigation: A new reactive obstacle avoidance approach for highly cluttered environments,” Robotics and Autonomous Systems, vol. 84, pp. 15–30, 2016. doi: 10.1016/j.robot.2016.07.001

[23] 
D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics &Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[24] 
J. Ballesteros, C. Urdiales, A. B. M. Velasco, and G. RamosJiménez, “A biomimetical dynamic window approach to navigation for collaborative control,” IEEE Trans. HumanMachine Systems, vol. 47, no. 6, pp. 1123–1133, 2017. doi: 10.1109/THMS.2017.2700633

[25] 
L. Xie, C. Henkel, K. Stol, and W. Xu, “Powerminimization and energyreduction autonomous navigation of an omnidirectional mecanum robot via the dynamic window approach local trajectory planning,” Int. Journal of Advanced Robotic Systems, vol. 15, no. 1, pp. 1–12, 2018.

[26] 
D. A. De Lima and G. A. S. Pereira, “Navigation of an autonomous car using vector fields and the dynamic window approach,” Journal of Control,Automation and Electrical Systems, vol. 24, no. 1–2, pp. 106–116, 2013. doi: 10.1007/s4031301300065

[27] 
M. Missura and M. Bennewitz, “Predictive collision avoidance for the dynamic window approach,” in Proc. Int. Conf. on Robotics and Automation (ICRA), IEEE, 2019, pp. 8620–8626.

[28] 
P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The Int. Journal of Robotics Research, vol. 17, no. 7, pp. 760–772, 1998. doi: 10.1177/027836499801700706

[29] 
T. Xu, S. Zhang, Z. Jiang, Z. Liu, and H. Cheng, “Collision avoidance of highspeed obstacles for mobile robots via maximumspeed aware velocity obstacle method,” IEEE Access, vol. 8, pp. 138 493–138 507, 2020.

[30] 
X. Zhu, J. Yi, H. Ding, and L. He, “Velocity obstacle based on vertical ellipse for multirobot collision avoidance,” Journal of Intelligent &Robotic Systems, vol. 99, no. 1, pp. 183–208, 2020.

[31] 
Z. Liu, Z. Jiang, T. Xu, H. Cheng, Z. Xie, and L. Lin, “Avoidance of highspeed obstacles based on velocity obstacles,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA). IEEE, 2018, pp. 7624–7630.

[32] 
G. T. Toussaint and B. K. Bhattacharya, “Optimal algorithms for computing the minimum distance between two finite planar sets,” Pattern Recognition Letters, vol. 2, no. 2, pp. 79–82, 1983. doi: 10.1016/01678655(83)900417

[33] 
J. Borenstein and Y. Koren, “Realtime obstacle avoidance for fast mobile robots,” IEEE Trans. systems,Man,and Cybernetics, vol. 19, no. 5, pp. 1179–1187, 1989. doi: 10.1109/21.44033

[34] 
D. Calisi and D. Nardi, “Performance evaluation of puremotion tasks for mobile robots with respect to world models,” Autonomous Robots, vol. 27, no. 4, pp. 465–481, 2009. doi: 10.1007/s105140099150y

[35] 
C. Ye and P. Webb, “A sub goal seeking approach for reactive navigation in complex unknown environments,” Robotics and Autonomous Systems, vol. 57, no. 9, pp. 877–888, 2009. doi: 10.1016/j.robot.2009.06.009
