A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 2
Feb.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Dan Zhang, Gang Feng, Yang Shi and Dipti Srinivasan, "Physical Safety and Cyber Security Analysis of Multi-Agent Systems: A Survey of Recent Advances," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319-333, Feb. 2021. doi: 10.1109/JAS.2021.1003820
Citation: Dan Zhang, Gang Feng, Yang Shi and Dipti Srinivasan, "Physical Safety and Cyber Security Analysis of Multi-Agent Systems: A Survey of Recent Advances," IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319-333, Feb. 2021. doi: 10.1109/JAS.2021.1003820

Physical Safety and Cyber Security Analysis of Multi-Agent Systems: A Survey of Recent Advances

doi: 10.1109/JAS.2021.1003820
Funds:  This work was partially supported by the National Natural Science Foundation of China (61873237), the Fundamental Research Funds for the Central Universities, the Fundamental Research Funds for the Provincial Universities of Zhejiang (RF-A2019003), the Research Grants Council of the Hong Kong Special Administrative Region of China (CityU/11204315), and the Hong Kong Scholars Program (XJ2016030)
More Information
  • Multi-agent systems (MASs) are typically composed of multiple smart entities with independent sensing, communication, computing, and decision-making capabilities. Nowadays, MASs have a wide range of applications in smart grids, smart manufacturing, sensor networks, and intelligent transportation systems. Control of the MASs are often coordinated through information interaction among agents, which is one of the most important factors affecting coordination and cooperation performance. However, unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly, and thus could lead to severe degradation of the whole system performance and even destruction of MASs. This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks, and our goal is to present a comprehensive survey on recent results on fault estimation, detection, diagnosis and fault-tolerant control of MASs, and cyber attack detection and secure control of MASs subject to two typical cyber attacks. Finally, the paper concludes with some potential future research topics on the security issues of MASs.

     

  • loading
  • [1]
    Y. Y. Tan, M. C. Zhou, Y. Y. Wang, X. W. Guo, and L. Qi, “A hybrid MIP-CP approach to multistage scheduling problem in continuous casting and hot-rolling processes,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4, pp. 1860–1869, Oct. 2019.
    [2]
    L. Huang, M. C. Zhou, K. R. Hao, and E. Hou, “A survey of multi-robot regular and adversarial patrolling,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 894–903, Jul. 2019.
    [3]
    Y. Duan, W. F. Li, X. W. Fu, Y. Luo, and L. Yang, “A methodology for reliability of WSN based on software defined network in adaptive industrial environment,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 74–82, Jan. 2018.
    [4]
    T. Wang, M. Hu, and Y. L. Zhao, “Consensus control with a constant gain for discrete-time binary-valued multi-agent systems based on a projected empirical measure method,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1052–1059, Jul. 2019.
    [5]
    M. J. Morshed, “A nonlinear coordinated approach to enhance the transient stability of wind energy-based power systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1087–1097, Jul. 2020.
    [6]
    S. B. Li, Y. Zheng, K. Q. Li, Y. J. Wu, J. K. Hedrick, F. Gao, and H. W. Zhang, “Dynamical modeling and distributed control of connected and automated vehicles: Challenges and opportunities,” IEEE Intell. Transp. Syst. Mag., vol. 9, no. 3, pp. 46–58, Jul. 2017.
    [7]
    L. Ding, Q. L. Han, X. H. Ge, and X. M. Zhang, “An overview of recent advances in event-triggered consensus of multiagent systems,” IEEE Trans. Cybern., vol. 48, no. 4, pp. 1110–1123, Apr. 2018.
    [8]
    D. R. Ding, Q. L. Han, Z. D. Wang, and X. H. Ge, “A survey on model-based distributed control and filtering for industrial cyber-physical systems,” IEEE Trans. Ind. Inform., vol. 15, no. 5, pp. 2483–2499, May 2019.
    [9]
    Z. Y. Zuo, Q. L. Han, B. D. Ning, X. H. Ge, and X. M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Inform., vol. 14, no. 6, pp. 2322–2334, Jun. 2018.
    [10]
    A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” IEEE Access, vol. 6, pp. 28573–28593, Apr. 2018.
    [11]
    P. Stone and M. Veloso, “Multiagent systems: A survey from a machine learning perspective,” Auton. Robots, vol. 8, no. 3, pp. 345–383, Jun. 2000.
    [12]
    L. Chen and C. Englund, “Cooperative intersection management: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 570–586, Feb. 2016. doi: 10.1109/TITS.2015.2471812
    [13]
    A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of multiobjective evolutionary algorithms based on decomposition,” IEEE Trans. Evol. Comput., vol. 21, no. 3, pp. 440–462, Jun. 2017.
    [14]
    S. V. Albrecht and P. Stone, “Autonomous agents modelling other agents: A comprehensive survey and open problems,” Artif. Intell., vol. 258, pp. 66–95, May 2018.
    [15]
    Q. Sun, K. W. Zhang, and Y. Shi, “Resilient model predictive control of cyber–physical systems under DoS attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4920–427, Jul. 2020. doi: 10.1109/TII.2019.2963294
    [16]
    D. Zhang, W. A. Zhang, L. Yu, and Q. G. Wang, “Distributed fault detection for a class of large-scale systems with multiple incomplete measurements,” J. Franklin Inst., vol. 352, no. 9, pp. 3730–3749, Sep. 2015. doi: 10.1016/j.jfranklin.2014.11.006
    [17]
    W. K. V. Chan and C. L. Philip Chen, “Consensus control with failure—wait or abandon?” IEEE Trans. Cybern., vol. 46, no. 1, pp. 75–84, Jan. 2016. doi: 10.1109/TCYB.2015.2394471
    [18]
    Y. Jung, M. Kim, A. Masoumzadeh, and J. B. D. Joshi, “A survey of security issue in multi-agent systems,” Artif. Intell. Rev., vol. 37, no. 3, pp. 239–260, Mar. 2012. doi: 10.1007/s10462-011-9228-8
    [19]
    H. Yang, Q. L. Han, X. H. Ge, L. Ding, Y. G. Xu, B. Jiang, and D. H. Zhou, “Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies,” IEEE Trans. Ind. Inform., vol. 16, no. 1, pp. 4–17, Jan. 2020. doi: 10.1109/TII.2019.2945004
    [20]
    E. Semsar-Kazerooni and K. Khorasani, “Team consensus for a network of unmanned vehicles in presence of actuator faults,” IEEE Trans. Control Syst. Technol., vol. 18, no. 5, pp. 1155–1161, Sep. 2010. doi: 10.1109/TCST.2009.2032921
    [21]
    S. J. Qin, “Survey on data-driven industrial process monitoring and diagnosis,” Annu. Rev. Control, vol. 36, no. 2, pp. 220–234, Dec. 2012. doi: 10.1016/j.arcontrol.2012.09.004
    [22]
    Z. Q. Ge, “Review on data-driven modeling and monitoring for plant-wide industrial processes,” Chemom. Intell. Lab. Syst., vol. 171, pp. 16–25, Dec. 2017. doi: 10.1016/j.chemolab.2017.09.021
    [23]
    Y. C. Jiang, S. Yin, and O. Kaynak, “Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond,” IEEE Access, vol. 6, pp. 47374–47384, Aug. 2018. doi: 10.1109/ACCESS.2018.2866403
    [24]
    P. P. Menon and C. Edwards, “Robust fault estimation using relative information in linear multi-agent networks,” IEEE Trans. Autom. Control, vol. 59, no. 2, pp. 477–482, Feb. 2014. doi: 10.1109/TAC.2013.2274689
    [25]
    C. Mellucci, P. P. Menon, C. Edwards, and A. Ferrara, “Second-order sliding mode observers for fault reconstruction in power networks,” IET Control Theory Appl., vol. 11, no. 16, pp. 2772–2782, Nov. 2017. doi: 10.1049/iet-cta.2017.0249
    [26]
    K. Zhang, B. Jiang, and P. Shi, “Adjustable parameter-based distributed fault estimation observer design for multiagent systems with directed graphs,” IEEE Trans. Cybern., vol. 47, no. 2, pp. 306–314, Feb. 2017.
    [27]
    K. Zhang, B. Jiang, and V. Cocquempot, “Distributed fault estimation observer design for multi-agent systems with switching topologies,” IET Control,Theory Appl., vol. 11, no. 16, pp. 2801–2807, Nov. 2017. doi: 10.1049/iet-cta.2017.0484
    [28]
    J. P. Xia, B. Jiang, and K. Zhang, “Dissipativity-based robust reduced-order fault estimation observer design of multi-agent systems,” Int. J. Control Autom. Syst., vol. 15, no. 6, pp. 2619–2627, Dec. 2017. doi: 10.1007/s12555-017-0016-3
    [29]
    J. L. Chen, H. J. Chu, Q. Fan, and Y. Y. Cao, “Fault estimation observer design for a class of nonlinear multiagent systems in finite-frequency domain,” Int. J. Robust Nonlinear Control, vol. 29, no. 10, pp. 2777–2798, Jul. 2019. doi: 10.1002/rnc.4521
    [30]
    W. X. Han, Z. H. Wang, Y. Shen, and W. B. Xie, “Robust fault estimation in the finite-frequency domain for multi-agent systems,” Trans Inst Meas Control, vol. 41, no. 11, pp. 3191–3181, Jul. 2019.
    [31]
    J. W. Zhu and G. H. Yang, “Robust distributed fault estimation for a network of dynamical systems,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 14–22, Mar. 2018. doi: 10.1109/TCNS.2016.2567223
    [32]
    X. H. Liu, X. W. Gao, and J. Han, “Distributed fault estimation for a class of nonlinear multiagent systems,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 50, no. 9, pp. 3382–3390, Sep. 2020. doi: 10.1109/TSMC.2018.2876370
    [33]
    K. Hashimoto, M. S. Chong, and D. V. Dimarogonas, “Distributed $ \ell_1$-state-and-fault estimation for multiagent systems” IEEE Trans. Control Netw. Syst., vol. 7, no. 2, pp. 699–710, Jun. 2020. doi: 10.1109/TCNS.2019.2939660
    [34]
    M. Gao, S. Yang, and L. Sheng, “Distributed fault estimation for time-varying multi-agent systems with sensor faults and partially decoupled disturbances,” IEEE Access, vol. 7, pp. 147905–147913, Oct. 2019. doi: 10.1109/ACCESS.2019.2946286
    [35]
    K. Zhang, G. S. Liu, and B. Jiang, “Robust unknown input observer-based fault estimation of leader-follower linear multi-agent systems,” Circuits,Syst.,Signal Process., vol. 36, no. 2, pp. 525–542, Feb. 2017. doi: 10.1007/s00034-016-0313-8
    [36]
    H. J. Ma and L. X. Xu, “Cooperative fault diagnosis for uncertain nonlinear multiagent systems based on adaptive distributed fuzzy estimators,” IEEE Trans. Cybern., vol. 50, no. 4, pp. 1739–1751, Apr. 2019.
    [37]
    J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “Distributed basis pursuit,” IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1942–1956, Apr. 2012. doi: 10.1109/TSP.2011.2182347
    [38]
    T. Wang, G. X. Zhang, J. B. Zhao, Z. Y. He, J. Wang, and M. Pérez-Jiménez, “Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1182–1194, May 2015. doi: 10.1109/TPWRS.2014.2347699
    [39]
    H. Zhang and J. M. Wang, “Active steering actuator fault detection for an automatically-steered electric ground vehicle,” IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3685–3702, May 2017.
    [40]
    M. T. Amin, S. Imtiaz, and F. Khan, “Process system fault detection and diagnosis using a hybrid technique,” Chem. Eng. Sci., vol. 189, pp. 191–211, Nov. 2018. doi: 10.1016/j.ces.2018.05.045
    [41]
    I. Shames, A. M. H. Teixeira, H. Sandberg, and K. H. Johansson, “Distributed fault detection for interconnected second-order systems,” Automatica, vol. 47, no. 12, pp. 2757–2764, Dec. 2011. doi: 10.1016/j.automatica.2011.09.011
    [42]
    X. H. Liu, X. W. Gao, and J. Han, “Robust unknown input observer based fault detection for high-order multi-agent systems with disturbances,” ISA Trans., vol. 61, pp. 15–28, Mar. 2016. doi: 10.1016/j.isatra.2015.11.025
    [43]
    X. W. Gao, X. H. Liu, and J. Han, “Reduced order unknown input observer based distributed fault detection for multi-agent systems,” J. Franklin Inst., vol. 354, pp. 1464–1483, Feb. 2017. doi: 10.1016/j.jfranklin.2016.11.032
    [44]
    Z. H. Zhang and G. H. Yang, “Distributed fault detection and isolation for multiagent systems: An interval observer approach,” IEEE Trans. Syst.,Man Cybern.:Syst., vol. 50, no. 6, pp. 2220–2230, Jun. 2020. doi: 10.1109/TSMC.2018.2811390
    [45]
    V. Reppa, M. M. Polycarpou, and C. G. Panayiotou, “Distributed sensor fault diagnosis for a network of interconnected cyberphysical systems,” IEEE Trans. Control Netw. Syst., vol. 2, no. 1, pp. 11–23, Mar. 2015. doi: 10.1109/TCNS.2014.2367362
    [46]
    A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Distributed fault detection and isolation resilient to network model uncertainties,” IEEE Trans. Cybern., vol. 44, no. 11, pp. 2024–2037, Nov. 2014. doi: 10.1109/TCYB.2014.2350335
    [47]
    D. Zhao, M. Chi, Z. H. Guan, Y. H. Wu, and J. Chen, “Distributed estimator-based fault detection for multi-agent networks,” Circuits,Syst.,Signal Process., vol. 37, no. 1, pp. 98–111, Jan. 2018. doi: 10.1007/s00034-017-0548-z
    [48]
    Y. Li, H. Fang, J. Chen, and C. P. Yu, “Distributed cooperative fault detection for multiagent systems: A mixed H/H2 optimization approach,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6468–6477, Aug. 2018. doi: 10.1109/TIE.2017.2786235
    [49]
    M. Davoodi, N. Meskin, and K. Khorasani, “Simultaneous fault detection and consensus control design for a network of multi-agent systems,” Automatica, vol. 66, pp. 185–194, Apr. 2016. doi: 10.1016/j.automatica.2015.12.027
    [50]
    S. Hajshirmohamadi, F. Sheikholeslam, and N. Meskin, “Distributed simultaneous fault detection and leader-following consensus control for multi-agent systems,” ISA Trans., vol. 87, pp. 129–142, Apr. 2019. doi: 10.1016/j.isatra.2018.11.017
    [51]
    M. R. Davoodi, K. Khorasani, H. Ali Talebi, and H. R. Momeni, “Distributed fault detection and isolation filter design for a network of heterogeneous multiagent systems,” IEEE Trans. Control Syst. Technol., vol. 22, no. 3, pp. 1061–1069, May 2014. doi: 10.1109/TCST.2013.2264507
    [52]
    Z. Q. Zuo, J. Zhang, and Y. J. Wang, “Adaptive fault-tolerant tracking control for linear and lipschitz nonlinear multi-agent systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3923–3931, Jun. 2015.
    [53]
    S. Chen, D. W. C. Ho, L. L. Li, and M. Liu, “Fault-tolerant consensus of multi-agent system with distributed adaptive protocol,” IEEE Trans. Cybern., vol. 45, no. 10, pp. 2142–2155, Oct. 2015. doi: 10.1109/TCYB.2014.2366204
    [54]
    D. Ye, M. M. Chen, and H. J. Yang, “Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 757–767, Mar. 2019. doi: 10.1109/TCYB.2017.2782731
    [55]
    G. Chen and Y. D. Song, “Fault-tolerant output synchronisation control of multi-vehicle systems,” IET Control Theory Appl., vol. 8, no. 8, pp. 574–584, May 2014. doi: 10.1049/iet-cta.2013.0831
    [56]
    J. W. Zhu, G. H. Yang, W. A. Zhang, and L. Yu, “Cooperative fault tolerant tracking control for multiagent systems: An intermediate estimator-based approach,” IEEE Trans. Cybern., vol. 48, no. 10, pp. 2972–2980, Oct. 2018. doi: 10.1109/TCYB.2017.2753383
    [57]
    C. Deng and G. H. Yang, “Cooperative adaptive output regulation for linear multi-agent systems with actuator faults,” IET Control Theory Appl., vol. 11, no. 14, pp. 2396–2402, Sep. 2017. doi: 10.1049/iet-cta.2016.1571
    [58]
    C. Deng and G. H. Yang, “Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems,” Automatica, vol. 103, pp. 62–68, May 2019. doi: 10.1016/j.automatica.2019.01.013
    [59]
    J. Zhang, D. W. Ding, and C. J. An, “Fault-tolerant containment control for linear multi-agent systems: An adaptive output regulation approach,” IEEE Access, vol. 7, pp. 89306–89315, Jul. 2019. doi: 10.1109/ACCESS.2019.2926619
    [60]
    M. E. Dehshalie, M. B. Menhaj, and M. Karrari, “Fault tolerant cooperative control for affine multi-agent systems: An optimal control approach,” J. Franklin Inst., vol. 356, no. 3, pp. 1360–1378, Feb. 2019. doi: 10.1016/j.jfranklin.2018.09.038
    [61]
    S. Chen, B. Chen, and F. Shi, “Distributed fault-tolerant consensus protocol for fuzzy multi-agent systems,” Circuits,Syst.,Signal Process., vol. 38, no. 2, pp. 611–624, Feb. 2019. doi: 10.1007/s00034-018-0872-y
    [62]
    W. M. Shi, W. H. Chen, L. X. Gao, and J. P. Hu, “Adaptive fault-tolerant tracking control for singular multi-agent systems,” in Proc. 11th Asian Control Conf., Gold Coast, Australia, 2017, pp. 2358–2363.
    [63]
    A. Ghasemi, J. Askari, and M. B. Menhaj, “Distributed fault tolerant control for multi-agent systems with complex-weighted directed communication topology subject to actuator faults,” Int. J. Control,Autom. Syst., vol. 17, no. 2, pp. 415–424, Feb. 2019. doi: 10.1007/s12555-017-0458-7
    [64]
    Y. J. Wang, Y. D. Song, and F. L. Lewis, “Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3978–3988, Jun. 2015.
    [65]
    M. Khalili, X. D. Zhang, M. M. Polycarpou, T. Parisini, and Y. C. Cao, “Distributed adaptive fault-tolerant control of uncertain multi-agent systems,” Automatica, vol. 87, pp. 142–151, Jan. 2018. doi: 10.1016/j.automatica.2017.09.002
    [66]
    C. Deng, W. N. Gao, and W. W. Che, “Distributed adaptive fault-tolerant output regulation of heterogeneous multi-agent systems with coupling uncertainties and actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1098–1106, Jul. 2020. doi: 10.1109/JAS.2020.1003258
    [67]
    L. Cao, H. Y. Li, G. W. Dong, and R. Q. Lu, “ Event-triggered control for multiagent systems with sensor faults and input saturation,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published.
    [68]
    B. Yan, C. F. Wu, and P. Shi, “Formation consensus for discrete-time heterogeneous multi-agent systems with link failures and actuator/sensor faults,” J. Franklin Inst., vol. 356, no. 12, pp. 6547–6570, Aug. 2019. doi: 10.1016/j.jfranklin.2019.03.028
    [69]
    P. A. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, USA: PTR Prentice-Hall, 1996.
    [70]
    H. Yang, M. Staroswiecki, B. Jiang, and J. Y. Liu, “Fault tolerant cooperative control for a class of nonlinear multi-agent systems,” Syst. Control Lett., vol. 60, no. 4, pp. 271–277, Apr. 2011. doi: 10.1016/j.sysconle.2011.02.004
    [71]
    Y. Chen, S. Kar, and J. M. F. Moura, “Resilient distributed estimation through adversary detection,” IEEE Trans. Signal Process., vol. 66, no. 9, pp. 2455–2469, May 2018. doi: 10.1109/TSP.2018.2813330
    [72]
    N. Forti, G. Battistelli, L. Chisci, S. Q. Li, B. L. Wang, and B. Sinopoli, “Distributed joint attack detection and secure state estimation,” IEEE Trans. Signal Inf. Proce. Netw., vol. 4, no. 1, pp. 96–110, Mar. 2018.
    [73]
    M. Deghat, V. Ugrinovskii, I. Shames, and C. Langbort, “Detection and mitigation of biasing attacks on distributed estimation networks,” Automatica, vol. 99, pp. 369–381, Jan. 2019. doi: 10.1016/j.automatica.2018.10.052
    [74]
    F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in unreliable networks: A system theoretic approach,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 90–104, Jan. 2012. doi: 10.1109/TAC.2011.2158130
    [75]
    R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault detection and isolation of large-scale discrete-time nonlinear systems: An adaptive approximation approach,” IEEE Trans. Autom. Control, vol. 57, no. 2, pp. 275–290, Feb. 2012. doi: 10.1109/TAC.2011.2164734
    [76]
    A. J. Gallo, M. S. Turan, P. Nahata, F. Boem, T. Parisini, and G. Ferrari-Trecate, “Distributed cyber-attack detection in the secondary control of DC microgrids,” in Proc. European Control Conf., Limassol, Cyprus, 2018, pp. 344–349.
    [77]
    R. Merco, Z. A. Biron, and P. Pisu, “Replay attack detection in a platoon of connected vehicles with cooperative adaptive cruise control,” in Proc. Annual American Control Conf., Milwaukee, USA, 2018, pp. 5582–5587.
    [78]
    Z. A. Biron, S. Dey, and P. Pisu, “Real-time detection and estimation of denial of service attack in connected vehicle systems,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 12, pp. 3893–3902, Dec. 2018. doi: 10.1109/TITS.2018.2791484
    [79]
    F. Boem, A. J. Gallo, G. Ferrari-Trecate, and T. Parisini, “A distributed attack detection method for multi-agent systems governed by consensus-based control,” in Proc. IEEE 56th Annu. Conf. Decision and Control, Melbourne, Australia, 2017, 5961–5966.
    [80]
    Y. W. Wang, H. O. Wang, J. W. Xiao, and Z. H. Guan, “Synchronization of complex dynamical networks under recoverable attacks,” Automatica, vol. 46, no. 1, pp. 197–203, Jan. 2010. doi: 10.1016/j.automatica.2009.10.024
    [81]
    Z. Feng, G. Q. Hu, and G. H. Wen, “Distributed consensus tracking for multi-agent systems under two types of attacks,” Int. J. Robust Nonlinear Control, vol. 26, no. 5, pp. 896–918, Mar. 2016. doi: 10.1002/rnc.3342
    [82]
    A. Y. Lu and G. H. Yang, “Distributed consensus control for multi-agent systems under denial-of-service,” Inf. Sci., vol. 439–440, pp. 95–107, May 2018. doi: 10.1016/j.ins.2018.02.008
    [83]
    H. J. Yang, S. Ju, Y. Q. Xia, and J. H. Zhang, “Predictive cloud control for networked multiagent systems with quantized signals under DoS attacks,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published.
    [84]
    W. B. Zhang, Z. D. Wang, Y. R. Liu, D. R. Ding, and F. E. Alsaadi, “Sampled-data consensus of nonlinear multiagent systems subject to cyber attacks,” Int. J. Robust Nonlinear Control, vol. 28, no. 1, pp. 53–67, Jan. 2018. doi: 10.1002/rnc.3855
    [85]
    Z. H. Cheng, D. Yue, S. L. Hu, H. Ge, and L. Chen, “Distributed event-triggered consensus of multi-agent systems under periodic DoS jamming attacks,” Neurocomputing, vol. 400, pp. 458–466, Aug. 2020. doi: 10.1016/j.neucom.2019.03.089
    [86]
    Y. Xu, M. Fang, Z. G. Wu, Y. J. Pan, M. Chadli, and T. W. Huang, “Input-based event-triggering consensus of multiagent systems under denial-of-service attacks,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 50, no. 4, pp. 1455–1464, Apr. 2020. doi: 10.1109/TSMC.2018.2875250
    [87]
    Y. Xu, M. Fang, P. Shi, and Z. G. Wu, “Event-based secure consensus of mutiagent systems against DoS attacks,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3468–3476, Aug. 2020. doi: 10.1109/TCYB.2019.2918402
    [88]
    Z. Feng and G. Q. Hu, “Secure cooperative event-triggered control of linear multiagent systems under DoS attacks,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3, pp. 741–752, May 2020. doi: 10.1109/TCST.2019.2892032
    [89]
    A. Cetinkaya, K. Kikuchi, T. Hayakawa, and H. Ishii, “Randomized transmission protocols for protection against jamming attacks in multi-agent consensus,” Automatica, vol. 117, Article No. 108960, Jul. 2020.
    [90]
    Z. Feng, G. H. Wen, and G. Q. Hu, “Distributed secure coordinated control for multiagent systems under strategic attacks,” IEEE Trans. Cybern., vol. 47, no. 5, pp. 1273–1284, May 2017. doi: 10.1109/TCYB.2016.2544062
    [91]
    Y. Yang, H. W. Xu, and D. Yue, “Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks,” IEEE Trans. Circ. Syst. I:Regul. Pap., vol. 66, no. 8, pp. 3089–3099, Aug. 2019. doi: 10.1109/TCSI.2019.2904747
    [92]
    D. Zhang, L. Liu, and G. Feng, “Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack,” IEEE Trans. Cybern., vol. 49, no. 4, pp. 1501–1511, Apr. 2019. doi: 10.1109/TCYB.2018.2806387
    [93]
    D. Zhang and G. Feng, “A new switched system approach to leader-follower consensus of heterogeneous linear multiagent systems with DoS attack,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published.
    [94]
    D. R. Ding, Z. D. Wang, D. W. C. Ho, and G. L. Wei, “Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1936–1947, Aug. 2017. doi: 10.1109/TCYB.2016.2582802
    [95]
    W. L. He, X. Y. Gao, W. M. Zhong, and F. Qian, “Secure impulsive synchronization control of multi-agent systems under deception attacks,” Inf. Sci., vol. 459, pp. 354–368, Aug. 2018. doi: 10.1016/j.ins.2018.04.020
    [96]
    Y. Cui, Y. R. Liu, W. B. Zhang, and F. E. Alsaadi, “Sampled-based consensus for nonlinear multiagent systems with deception attacks: The decoupled method,” IEEE Trans. Syst., Man, Cybern.: Syst., to be published.
    [97]
    X. Huang and J. X. Dong, “Reliable leader-to-follower formation control of multiagent systems under communication quantization and attacks,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 50, no. 1, pp. 89–99, Jan. 2020. doi: 10.1109/TSMC.2019.2894946
    [98]
    Y. M. Dong, N. Gupta, and N. Chopra, “False data injection attacks in bilateral teleoperation systems,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3, pp. 1168–1176, May 2020. doi: 10.1109/TCST.2019.2903446
    [99]
    R. Moghadam and H. Modares, “Resilient autonomous control of distributed multiagent systems in contested environments,” IEEE Trans. Cybern., vol. 49, no. 11, pp. 3957–3967, Nov. 2019. doi: 10.1109/TCYB.2018.2856089
    [100]
    A. Mustafa, H. Modares, and R. Moghadam, “Resilient synchronization of distributed multi-agent systems under attacks,” Automatica, vol. 115, Article No. 108869, May 2020.
    [101]
    A. Mustafa and H. Modares, “Attack analysis and resilient control design for discrete-time distributed multi-agent systems,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 369–376, Apr. 2020. doi: 10.1109/LRA.2019.2959726
    [102]
    Y. Yang, Q. D. Liu, Y. Qian, D. Yue, and X. H. Ding, “Secure bipartite tracking control of a class of nonlinear multi-agent systems with nonsymmetric input constraint against sensor attacks,” Inf. Sci., vol. 539, pp. 504–521, Oct. 2020. doi: 10.1016/j.ins.2020.05.086
    [103]
    Z. H. Xu, H. J. Ni, H. R. Karimi, and D. Zhang, “A markovian jump system approach to consensus of heterogeneous multiagent systems with partially unknown and uncertain attack strategies,” Int. J. Robust Nonlinear Control, vol. 30, no. 7, pp. 3039–3053, May 2020. doi: 10.1002/rnc.4923
    [104]
    J. Huang, Nonlinear Output Regulation: Theory and Applications. Philadelphia, USA: Society for Industrial and Applied Mathematics, 2004.
    [105]
    A. Sonnino, S. Bano, M. Al-Bassam, and G. Danezis, “Replay attacks and defenses against cross-shard consensus in sharded distributed ledgers,” arXiv: 1901.11218, Sep. 2020.
    [106]
    L. Faramondi, R. Setola, and G. Oliva, “Performance and robustness of discrete and finite time average consensus algorithms,” Int. J. Syst. Sci., vol. 49, no. 12, pp. 2704–2724, Aug. 2018. doi: 10.1080/00207721.2018.1510059
    [107]
    Satori is the latest Mirai botnet variant that is targeting Huawei HG532 home routers. [Online]. Available: https://securityaffairs.co/wordpress/67040/malware/satori-botnet-mirai-variant.html. Accessed on: Oct. 2019.
    [108]
    J. L. Liu, T. T. Yin, D. Yue, H. R. Karimi, and J. D. Cao, “Event-based secure leader-following consensus control for multiagent systems with multiple cyber attacks,” IEEE Trans. Cybern., to be published.
    [109]
    A. Sanjab and W. Saad, “Data injection attacks on smart grids with multiple adversaries: A game-theoretic perspective,” IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 2038–2049, Jul. 2016. doi: 10.1109/TSG.2016.2550218
    [110]
    A. Sanjab and W. Saad, “On bounded rationality in cyber-physical systems security: Game-theoretic analysis with application to smart grid protection,” in Proc. Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids, Vienna, Austria, 2016, pp. 1–6.
    [111]
    L. Zhao and G. H. Yang, “Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks,” Inf. Sci., vol. 536, pp. 39–53, Jul. 2020.
    [112]
    P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A detailed investigation and analysis of using machine learning techniques for intrusion detection,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, pp. 686–728, 2019. doi: 10.1109/COMST.2018.2847722
    [113]
    M. Husák, J. Komárková, E. Bou-Harb, and P. Čeleda, “Survey of attack projection, prediction, and forecasting in cyber security,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, pp. 640–660, 2019. doi: 10.1109/COMST.2018.2871866
    [114]
    W. Chen, D. R. Ding, H. L. Dong, and G. L. Wei, “Distributed resilient filtering for power systems subject to denial-of-service attacks,” IEEE Trans. Syst.,Man,Cybern.:Syst., vol. 49, no. 8, pp. 1688–1697, Aug. 2019. doi: 10.1109/TSMC.2019.2905253
    [115]
    C. M. Ahmed, V. R. Palleti, and A. P. Mathur, “WADI: A water distribution testbed for research in the design of secure cyber physical systems,” in Proc. 3rd Int. Workshop on Cyber-Physical Systems for Smart Water Networks, Pittsburgh, USA, 2017, pp. 25–28.
    [116]
    E. Korkmaz, A. Dolgikh, M. Davis, and V. Skormin, “Industrial control systems security testbed,” in Proc. 11th Annu. Symp. Information Assurance, Albany, USA, 2016.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views (5255) PDF downloads(454) Cited by()

    Highlights

    • A more systematic and broader overview on the safety and security of MASs is given.
    • Different techniques and methodologies are briefly presented, and their advantages and disadvantages are highlighted.
    • Some emerging and challenging research direction are proposed such that the readers of this article can quickly grasp the state of the art in the concerned research field and explore new research topics.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return