A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 3
Mar.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Khalid El Majdoub, Fouad Giri and Fatima-Zahra Chaoui, "Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 582-596, Mar. 2021. doi: 10.1109/JAS.2020.1003521
Citation: Khalid El Majdoub, Fouad Giri and Fatima-Zahra Chaoui, "Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper," IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 582-596, Mar. 2021. doi: 10.1109/JAS.2020.1003521

Adaptive Backstepping Control Design for Semi-Active Suspension of Half-Vehicle With Magnetorheological Damper

doi: 10.1109/JAS.2020.1003521
More Information
  • This paper investigates the problem of controlling half-vehicle semi-active suspension system involving a magnetorheological (MR) damper. This features a hysteretic behavior that is presently captured through the nonlinear Bouc-Wen model. The control objective is to regulate well the heave and the pitch motions of the chassis despite the road irregularities. The difficulty of the control problem lies in the nonlinearity of the system model, the uncertainty of some of its parameters, and the inaccessibility to measurements of the hysteresis internal state variables. Using Lyapunov control design tools, we design two observers to get online estimates of the hysteresis internal states and a stabilizing adaptive state-feedback regulator. The whole adaptive controller is formally shown to meet the desired control objectives. This theoretical result is confirmed by several simulations demonstrating the supremacy of the latter compared to the skyhook control and passive suspension.

     

  • loading
  • [1]
    K. El Majdoub, F. Giri, H. Ouadi, and F. Z. Chaoui, “Nonlinear cascade strategy for longitudinal control of electric vehicle,” J. Dyn. Syst. Meas. Control, vol. 136, no. 1, pp. 011005, Jan. 2014. doi: 10.1115/1.4024782
    [2]
    K. El Majdoub, F. Giri, H. Ouadi, L. Dugard, and F. Z. Chaoui, “Vehicle longitudinal motion modeling for nonlinear control,” Control Eng. Pract., vol. 20, no. 1, pp. 69–81, Jan. 2012. doi: 10.1016/j.conengprac.2011.09.005
    [3]
    K. E. L. Majdoub, F. Giri, H. Ouadi, and F. Z. Chaoui, “Vehicle longitudinal control using Kiencke’s tire model and sliding mode control design,” IFAC Proc. Vol., vol. 43, no. 14, pp. 903–908, Sept. 2010. doi: 10.3182/20100901-3-IT-2016.00189
    [4]
    F. Giri, K. EL Majdoub, and H. Ouadi, “Accounting for tire effect in longitudinal vehicle control, ” in Proc. American Control Conf., St. Louis, USA, 2009, pp. 3325–3330.
    [5]
    P. Hui, L. Fan, and X. Zeren, “Variable universe fuzzy control for vehicle semi-active suspension system with MR damper combining fuzzy neural network and particle swarm optimization,” Neurocomputing, vol. 306, pp. 130–140, Sept. 2018.
    [6]
    H. Pang, X. Zhang, and Z. R. Xu, “Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints,” ISA Trans., vol. 88, pp. 23–36, May 2019. doi: 10.1016/j.isatra.2018.11.047
    [7]
    L. C. Felix-Herran, D. Mehdi, R. A. Ramirez-Mendoza, J. de J. Rodriguez-Ortiza, and R. Soto, “H2 control of a one-quarter semi-active ground vehicle suspension,” J. Appl. Res. Technol., vol. 14, no. 3, pp. 173–183, Jun. 2016. doi: 10.1016/j.jart.2016.05.004
    [8]
    C. Bohn, A. Cortabarria, V. Hartel, and K. Kowalczyk, “Active control of engine induced vibrations in automotive vehicles using disturbance observer gain scheduling,” Control Eng. Pract., vol. 12, no. 8, pp. 1029–1039, Aug. 2004. doi: 10.1016/j.conengprac.2003.09.008
    [9]
    X. X. Shao, F. Naghdy, H. P. Du, and H. Y. Li, “Output feedback H $_\infty $ control for active suspension of in-wheel motor driven electric vehicle with control faults and input delay” ISA Trans., vol. 92, pp. 94–108, Sept. 2019. doi: 10.1016/j.isatra.2019.02.016
    [10]
    Y. Kim, R. Langari, and S. Hurlebaus, “Semiactive nonlinear control of a building with a magnetorheological damper system,” Mech. Syst. Signal Process., vol. 23, no. 2, pp. 300–315, Feb. 2009. doi: 10.1016/j.ymssp.2008.06.006
    [11]
    Y. Q. Liu, H. Matsuhisa, and H. Utsuno, “Semi-active vibration isolation system with variable stiffness and damping control,” J. Sound Vibrat., vol. 313, no. 1–2, pp. 16–28, Jun. 2008. doi: 10.1016/j.jsv.2007.11.045
    [12]
    G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, and S. H. Yeo, “MR damper and its application for semi-active control of vehicle suspension system,” Mechatronics, vol. 12, no. 7, pp. 963–973, Sep. 2002. doi: 10.1016/S0957-4158(01)00032-0
    [13]
    J. D. Carlson, “Magnetorheological fluid actuators, ” in Adaptronics and Smart Structures: Basics, Materials, Design and Applications, 2nd ed. H. Janocha, Ed. Berlin, Germany: Springer, 1999.
    [14]
    S. Cesmeci and T. Engin, “Modeling and testing of a field-controllable magnetorheological fluid damper,” Int. J. Mech. Sci., vol. 52, no. 8, pp. 1036–1046, Aug. 2010. doi: 10.1016/j.ijmecsci.2010.04.007
    [15]
    S. B. Choi, S. K. Lee, and Y. P. Park, “A hysteresis model for the field-dependent damping force of a magnetorheological damper,” J. Sound Vibrat., vol. 245, no. 2, pp. 375–383, Aug. 2001. doi: 10.1006/jsvi.2000.3539
    [16]
    M. Zapateiro, F. Pozo, H. R. Karimi, and N. S. Luo, “Semiactive control methodologies for suspension control with magnetorheological dampers,” IEEE/ASME Trans. Mech., vol. 17, no. 2, pp. 370–388, Apr. 2012. doi: 10.1109/TMECH.2011.2107331
    [17]
    K. J. Wakeham and D. G. Rideout, “Model complexity requirements in design of half car active suspension controllers, ” in Proc. ASME Dynamic Systems and Control Conf. and Bath/ASME Symp. Fluid Power and Motion Control, Arlington, USA, 2011, pp. 839–846.
    [18]
    K. El Majdoub, H. Ouadi, N. Belbounaguia, E. Kheddioui, R. Souhail, and O. Ammari, “Optimal control of semi-active suspension quarter car employing Magnetorheological damper and Dahl model, ” in Proc. Renewable Energies, Power Systems & Green Inclusive Economy, Casablanca, Morocco, 2018.
    [19]
    K. El Majdoub, H. Ouadi, and A. Touati, “LQR control for semi-active quarter vehicle suspension with magnetorhehological damper and Bouc-Wen model,” Int. Rev. Modell. Simulat. IREMOS, vol. 7, no. 4, pp. 703–711, Aug. 2014. doi: 10.15866/iremos.v7i4.2305
    [20]
    M. Fleps-Dezasse, T. Bunte, F. Svaricek, and J. Brembeck, “LPV feedforward control of semi-active suspensions for improved roll stability,” Control Eng. Pract., vol. 78, pp. 1–11, Sept. 2018. doi: 10.1016/j.conengprac.2018.06.007
    [21]
    W. C. Sun, H. J. Gao, and O. Kaynak, “Adaptive backstepping control for active suspension systems with hard constraints,” IEEE/ASME Trans. Mech., vol. 18, no. 3, pp. 1072–1079, Jun. 2013. doi: 10.1109/TMECH.2012.2204765
    [22]
    K. El Majdoub, D. Ghani, F. Giri, and F. Z. Chaoui, “Adaptive semi-active suspension of quarter-vehicle with magnetorheological damper,” J. Dyn. Syst. Meas. Control, vol. 137, no. 2, pp. 021010, Feb. 2015. doi: 10.1115/1.4028314
    [23]
    K. El Majdoub, F. Giri, and F. Z. Chaoui, “Backstepping adaptive control of quarter-vehicle semi-active suspension with Dahl MR damper model, ” in Proc. IFAC, vol. 46, no. 11, pp. 558–563, 2013.
    [24]
    K. El Majdoub and H. Ouadi, “Backstepping control for semi-active suspension of half-vehicle with Dahl magnetorheological damper model,” Int. J. Eng. Appl. IREA, vol. 3, no. 4, pp. 96–107, 2015.
    [25]
    H. L. Zhang, E. R. Wang, F. H. Min, R. Subash, and C. Y. Su, “Skyhook-based semi-active control of full-vehicle suspension with magneto-rheological dampers,” Chin. J. Mech. Eng., vol. 26, no. 3, pp. 498–505, May 2013. doi: 10.3901/CJME.2013.03.498
    [26]
    K. El Majdoub and H. Ouadi, “A comparative study of semi-active quarter car suspension control strategies for magnetorheological damper,” Int. J. Eng. Appl. IREA, vol. 2, no. 6, pp. 179–188, 2014.
    [27]
    M. Ahmadian and N. Vahdati, “Transient dynamics of semi-active suspensions with hybrid control,” J. Intell. Mater. Syst. Struct., vol. 17, no. 2, pp. 145–153, Feb. 2006. doi: 10.1177/1045389X06056458
    [28]
    H. P. Du, J. Lam, and N. Zhang, “Modelling of a magneto-rheological damper by evolving radial basis function networks,” Eng. Appl. Artif. Intell., vol. 19, no. 8, pp. 869–881, Dec. 2006. doi: 10.1016/j.engappai.2006.02.005
    [29]
    H. P. Du, J. Lam, K. C. Cheung, W. H. Li, and N. Zhang, “Direct voltage control of magnetorheological damper for vehicle suspensions,” Smart Mater. Struct., vol. 22, no. 10, pp. 105016, Sept. 2013. doi: 10.1088/0964-1726/22/10/105016
    [30]
    S. Turkay and H. Akcay, “Tire damping effect on H2 optimal control of half-car active suspensions,” J. Vib. Acoust., vol. 132, no. 2, pp. 024502, Apr. 2010. doi: 10.1115/1.4000767
    [31]
    R. S. Prabakar, C. Sujatha, and S. Narayanan, “Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper,” J. Sound Vibrat., vol. 326, no. 3–5, pp. 400–420, Oct. 2009. doi: 10.1016/j.jsv.2009.05.032
    [32]
    H. H. Pan, H. Y. Li, W. C. Sun, and Z. L. Wang, “Adaptive fault-tolerant compensation control and its application to nonlinear suspension systems,” IEEE Trans. Syst.,Man,Cybernet.:Syst., vol. 50, no. 5, pp. 1766–1776, May 2020. doi: 10.1109/TSMC.2017.2785796
    [33]
    L. Liu, Y. J. Liu, and S. C. Tong, “Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems,” IEEE Trans. Cybernet., vol. 49, no. 7, pp. 2536–2545, Jul. 2019. doi: 10.1109/TCYB.2018.2828308
    [34]
    H. K. Khalil, Nonlinear Systems. 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
    [35]
    M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design. Hoboken, NJ, USA: Wiley, 1995.
    [36]
    S. Erlicher and N. Point, “Thermodynamic admissibility of Bouc-Wen type hysteresis models,” Compt. Rend. Mecani., vol. 332, no. 1, pp. 51–57, Jan. 2004. doi: 10.1016/j.crme.2003.10.009
    [37]
    P. Ioannou and B. Fidan, Adaptive Control Tutorial. Philadelphia, PA, USA: SIAM, 2006.
    [38]
    L. Q. Jin and Y. Liu, “Study on self-tuning control strategy of suspension systems for improving vehicle ride performance,” Int. J. Control Autom., vol. 7, no. 6, pp. 129–142, 2014. doi: 10.14257/ijca.2014.7.6.13

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (1184) PDF downloads(87) Cited by()

    Highlights

    • This paper presents a new controller for half-vehicle semi-active suspension systems in vehicles.
    • The main novel component in the considered suspension is a magnetorheological (MR) damper which offers much better comfort onboard.
    • The damper nonlinear hysteretic behavior is captured using Bouc-Wen model.
    • The proposed controller regulates well the heave and the pitch motions of the chassis despite the road irregularities.
    • It is constituted of nonlinear control laws, parameter adaptive laws and state observers.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return