 Volume 7
							Issue 3
								
						 Volume 7
							Issue 3 
						IEEE/CAA Journal of Automatica Sinica
| Citation: | Kajal Kothari, Utkal Mehta, Vineet Prasad and Jito Vanualailai, "Identification Scheme for Fractional Hammerstein Models With the Delayed Haar Wavelet," IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 882-891, May 2020. doi: 10.1109/JAS.2020.1003093 | 
 
	                | [1] | J. Wang, Y. Wei, T. Liu, A. Li, and Y. Wang, “Fully parametric identification for continuous time fractional order Hammerstein systems,” J. Franklin I., 2019. | 
| [2] | Y. Zhao, Y. Li, F. Zhou, Z. Zhou, and Y. Chen, “An iterative learning approach to identify fractional order KiBaM model,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 322–331, 2017. doi:  10.1109/JAS.2017.7510358 | 
| [3] | S. W. Sung, “System identification method for Hammerstein processes,” Industrial &Engineering Chemistry Research, vol. 41, no. 17, pp. 4295–4302, 2002. | 
| [4] | Y. J. Lee, S. W. Sung, S. Park, and S. Park, “Input test signal design and parameter estimation method for the Hammerstein-Wiener processes,” Industrial &Engineering Chemistry Research, vol. 43, no. 23, pp. 7521–7530, 2004. | 
| [5] | H. C. Park, S. W. Sung, and J. Lee, “Modeling of Hammerstein-Wiener processes with special input test signals,” Industrial &Engineering Chemistry Research, vol. 45, no. 3, pp. 1029–1038, 2006. | 
| [6] | J.-C. Jeng, M.-W. Lee, and H.-P. Huang, “Identification of block-oriented nonlinear processes using designed relay feedback tests,” Industrial &Engineering Chemistry Research, vol. 44, no. 7, pp. 2145–2155, 2005. | 
| [7] | U. Mehta and S. Majhi, “Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains,” ISA Trans., vol. 49, no. 4, pp. 501–509, 2010. doi:  10.1016/j.isatra.2010.04.006 | 
| [8] | S. Dong, T. Liu, and Q. Wang, “Identification of Hammerstein systems with time delay under load disturbance,” IET Control Theory Applications, vol. 12, no. 7, pp. 942–952, 2018. | 
| [9] | S. Zhang, D. Wang, and F. Liu, “Separate block-based parameter estimation method for hammerstein systems,” Royal Society Open Science, vol. 5, no. 6, 2018. doi:  10.1098/rsos.172194 | 
| [10] | F. Li and L. Jia, “Parameter estimation of Hammerstein-Wiener nonlinear system with noise using special test signals,” Neurocomputing, vol. 344, pp. 37–48, 2019. doi:  10.1016/j.neucom.2018.02.108 | 
| [11] | M. Aoun, R. Malti, O. Cois, and A. Oustaloup, “System identification using fractional Hammerstein models, ” in Proc. 15th IFAC World Congr., Spain, pp. 264–268, 2002. | 
| [12] | K. Hsu, K. Poolla, and T. L. Vincent, “Identification of structured nonlinear systems,” IEEE Trans. Automatic Control, vol. 53, no. 11, pp. 2497–2513, 2008. doi:  10.1109/TAC.2008.2006928 | 
| [13] | A. Maachou, R. Malti, P. Melchior, J.-L. Battaglia, A. Oustaloup, and B. Hay, “Nonlinear thermal system identification using fractional Volterra series,” Control Engineering Practice, vol. 29, pp. 50–60, 2014. doi:  10.1016/j.conengprac.2014.02.023 | 
| [14] | L. Vanbeylen, “A fractional approach to identify Wiener-Hammerstein systems,” Automatica, vol. 50, no. 3, pp. 903–909, 2014. doi:  10.1016/j.automatica.2013.12.013 | 
| [15] | G. Giordano and J. Sjoberg, “A time-domain fractional approach for Wiener-Hammerstein systems identification,” IFAC-PapersOnLine, vol. 48, no. 28, pp. 1232–1237, 2015. doi:  10.1016/j.ifacol.2015.12.300 | 
| [16] | W. Allafi, I. Zajic, K. Uddin, and K. J. Burnham, “Parameter estimation of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time,” IET Control Theory Applications, vol. 11, no. 15, pp. 2591–2598, 2017. doi:  10.1049/iet-cta.2017.0284 | 
| [17] | V. S. Krishnasamy, S. Mashayekhi, and M. Razzaghi, “Numerical solutions of fractional differential equations by using fractional Taylor basis,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 98–106, 2017. doi:  10.1109/JAS.2017.7510337 | 
| [18] | W. Gu, Y. Yu, and W. Hu, “Artificial bee colony algorithmbased parameter estimation of fractional-order chaotic system with time delay,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 107–113, 2017. doi:  10.1109/JAS.2017.7510340 | 
| [19] | N. I. Chaudhary, M. S. Aslam, and M. A. Z. Raja, “Modified volterra lms algorithm to fractional order for identification of Hammerstein nonlinear system,” IET Signal Processing, vol. 11, no. 8, pp. 975–985, 2017. doi:  10.1049/iet-spr.2016.0578 | 
| [20] | D. Cai, Y. Yu, and J. Wei, “A modified artificial Bee colony algorithm for parameter estimation of fractional-order nonlinear systems,” IEEE Access, vol. 6, pp. 48600–48610, 2018. doi:  10.1109/ACCESS.2018.2859978 | 
| [21] | M. J. Moghaddam, H. Mojallali, and M. Teshnehlab, “Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay,” Applied Soft Computing, vol. 70, pp. 486–500, 2018. doi:  10.1016/j.asoc.2018.05.046 | 
| [22] | S. Cheng, Y. Wei, D. Sheng, Y. Chen, and Y. Wang, “Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient,” Signal Processing, vol. 142, pp. 1–10, 2018. doi:  10.1016/j.sigpro.2017.06.025 | 
| [23] | M.-R. Rahmani and M. Farrokhi, “Fractional-order Hammerstein statespace modeling of nonlinear dynamic systems from input-output measurements,” ISA Trans., 2019. | 
| [24] | Z. Aslipour and A. Yazdizadeh, “Identification of nonlinear systems using adaptive variable-order fractional neural networks (case study: a wind turbine with practical results),” Engineering Applications of Artificial Intelligence, vol. 85, pp. 462–473, 2019. doi:  10.1016/j.engappai.2019.06.025 | 
| [25] | S. Cheng, Y. Wei, D. Sheng, and Y. Wang, “Identification for Hammerstein nonlinear systems based on universal spline fractional order LMS algorithm,” Communications in Nonlinear Science and Numerical Simulation, vol. 79, pp. 104901, 2019. doi:  10.1016/j.cnsns.2019.104901 | 
| [26] | Y. Li, X. Meng, and Y.-Q. Ding, “Using wavelet multi-resolution nature to accelerate the identification of fractional order system,” Chinese Physics B, vol. 26, no. 5, pp. 050201, 2017. doi:  10.1088/1674-1056/26/5/050201 | 
| [27] | Y. Li, X. Meng, B. Zheng, and Y. Ding, “Parameter identification of fractional order linear system based on Haar wavelet operational matrix,” ISA Trans., vol. 59, pp. 79–84, 2015. doi:  10.1016/j.isatra.2015.08.011 | 
| [28] | Y. Tang, N. Li, M. Liu, Y. Lu, and W. Wang, “Identification of fractionalorder systems with time delays using block pulse functions,” Mechanical Systems and Signal Processing, vol. 91, pp. 382–394, 2017. doi:  10.1016/j.ymssp.2017.01.008 | 
| [29] | K. Kothari, U. Mehta, and J. Vanualailai, “A novel approach of fractional-order time delay system modeling based on Haar wavelet,” ISA Trans., vol. 80, pp. 371–380, 2018. doi:  10.1016/j.isatra.2018.07.019 | 
| [30] | X.-L. Luo, L.-Z. Liao, and H. W. Tam, “Convergence analysis of the Levenberg-Marquardt method,” Optimization Methods and Software, vol. 22, no. 4, pp. 659–678, 2007. doi:  10.1080/10556780601079233 | 
| [31] | M. A. Demetriou and I. G. Rosen, “On the persistence of excitation in the adaptive estimation of distributed parameter systems,” IEEE Trans. Automatic Control, vol. 39, no. 5, pp. 1117–1123, 1994. doi:  10.1109/9.284907 |