IEEE/CAA Journal of Automatica Sinica
Citation:  Pratik Roy, Ghanshaym Singha Mahapatra and Kashi Nath Dey, "Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network," IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 13651383, Nov. 2019. doi: 10.1109/JAS.2019.1911753 
[1] 
M. R. Lyu, Handbook of Software Reliability Engineering, New York, McGrawHill, 1996.

[2] 
M. Jain and R. Gupta, " Optimal release policy of modulebased software,” Quality Technology and Quantitative Management, vol. 8, no. 2, pp. 147–165, 2011. doi: 10.1080/16843703.2011.11673253

[3] 
A. L. Goel and K. Okumoto, " Timedependent errordetection rate model for software reliability and other performance measures,” IEEE Trans. Reliability, vol. 28, no. 3, pp. 206–211, 1979.

[4] 
M. Xie, " Software Reliability Modeling,” World Scientific,Singapore, 1991.

[5] 
H. Pham, System Software Reliability, New Jersey, Springer, 2006.

[6] 
S. Yamada and S. Osaki, " Software reliability growth modeling: models and applications,” IEEE Trans. Software Engineering, vol. 11, pp. 1431–1437, 1985.

[7] 
J. Yang, Y. Liu, M. Xie, and M. Zhao, " Modeling and analysis of reliability of multirelease open source software incorporating both fault detection and correction processes,” J. Systems and Software, vol. 115, pp. 102–110, 2016. doi: 10.1016/j.jss.2016.01.025

[8] 
M. Ohba and X.M. Chou, Does imperfect debugging effect software reliability growth, in Proc. 11th Int. Conf. on Software Engineering, 1989, pp. 237–244.

[9] 
T. Lynch, H. Pham, and W. Kuo, " Modeling softwarereliability with multiple failuretypes and imperfect debugging, ” in Proc. Annual Reliability and Maintainability Symposium, 1994, pp. 235–240.

[10] 
Q. Li and H. Pham, " NHPP software reliability model considering the uncertainty of operating environments with imperfect debugging and testing coverage,” Applied Mathematical Modelling, vol. 51, pp. 68–85, 2017. doi: 10.1016/j.apm.2017.06.034

[11] 
B. Pachauri, A. Kumar, and J. Dhar, " Modeling optimal release policy under fuzzy paradigm in imperfect debugging environment,” Information and Software Technology, vol. 55, no. 11, pp. 1974–1980, 2013. doi: 10.1016/j.infsof.2013.06.001

[12] 
S. M. Li, Q. Yin, P. Guo, and M. R. Lyu, " A hierarchical mixture model for software reliability prediction,” Applied Mathematics and Computation, vol. 185, pp. 1120–1130, 2007. doi: 10.1016/j.amc.2006.07.028

[13] 
Y. S. Su and C. Y. Huang, " Neuralnetworkbased approaches for software reliability estimation using dynamic weighted combinational models,” J. Systems and Software, vol. 80, pp. 606–615, 2007. doi: 10.1016/j.jss.2006.06.017

[14] 
J. Zheng, " Predicting software reliability with neural network ensembles,” Expert Systems with Applications, vol. 36, pp. 2116–2122, 2009. doi: 10.1016/j.eswa.2007.12.029

[15] 
P. K. Kapur, S. K. Khatri, and M. Basirzadeh, " Software reliability assessment using artificial neural network based flexible model incorporating faults of different complexity, International Journal of Reliability,” Quality and Safety Engineering, vol. 15, no. 2, pp. 113–127, 2008. doi: 10.1142/S0218539308002976

[16] 
C. J. Hsu and C. Y. Huang, " Optimal weighted combinational models for software reliability estimation and analysis,” IEEE Trans. Reliability, vol. 63, no. 3, pp. 731–749, 2014. doi: 10.1109/TR.2014.2315966

[17] 
J. Kennedy and R. C. Eberhart, " Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, 1995, pp. 1942–1948.

[18] 
K. E. Parsopoulos and M. N. Vrahatis, " Particle swarm optimization and intelligence: advances and applications,” Information Science Reference, 2010.

[19] 
M. S. Arumugam and M. V. C. Ra, " On the improved performances of the particle swarm optimization algorithms with adaptive parameters, crossover operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems,” Applied Soft Computing, vol. 8, no. 1, pp. 324–336, 2008. doi: 10.1016/j.asoc.2007.01.010

[20] 
M. Nasir, S. Das, D. Maity, S. Sengupta, U. Halder, and P. N. Suganthan, " A dynamic neighborhood learning based particle swarm optimizer for global numerical optimizatio,” Information Sciences, vol. 209, pp. 16–36, 2012. doi: 10.1016/j.ins.2012.04.028

[21] 
H. Wang, H. Sun, C. Li, S. Rahnamayan, and J. S. Pan, " Diversity enhanced particle swarm optimization with neighborhood search,” Information Sciences, vol. 223, pp. 119–135, 2013. doi: 10.1016/j.ins.2012.10.012

[22] 
G. Xu, " An adaptive parameter tuning of particle swarm optimization algorithm,” Applied Mathematics and Computation, vol. 219, pp. 4560–4569, 2013. doi: 10.1016/j.amc.2012.10.067

[23] 
T. Niknam, " A new fuzzy adaptive hybrid particle swarm optimization algorithm for nonlinear, nonsmooth and nonconvex economic dispatch problem,” Applied Energy, vol. 87, pp. 327–339, 2010. doi: 10.1016/j.apenergy.2009.05.016

[24] 
Y. T. Juang, S. L. Tung, and H. C. Chiu, " Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” Information Sciences, vol. 181, pp. 4539–4549, 2011. doi: 10.1016/j.ins.2010.11.025

[25] 
E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, " A novel fuzzy adaptive configuration of particle swarm optimization to solve largescale optimal reactive power dispatch,” Applied Soft Computing, vol. 53, pp. 441–456, 2017. doi: 10.1016/j.asoc.2017.01.012

[26] 
J. R. Zhang, J. Zhang, T. M. Lok, and M. R. Lyu, " A hybrid particle swarm optimizationbackpropagation algorithm for feedforward neural network training,” Applied Mathematics and Computation, vol. 185, no. 2, pp. 1026–1037, 2007. doi: 10.1016/j.amc.2006.07.025

[27] 
S. Haykin, Neural Networks and Learning Machines, New York, Prentice Hall, 2012.

[28] 
N. Karunanithi, D. Whitley, and Y. K. Malaiya, " Prediction of software reliability using connectionist models,” IEEE Trans. Software Engineering, vol. 18, pp. 563–574, 1992. doi: 10.1109/32.148475

[29] 
K. Y. Cai, L. Cai, W. D. Wang, Z. Y. Yu, and D. Zhang, " On the neural network approach in software reliability modeling,” J. Systems and Software, vol. 58, pp. 47–62, 2001. doi: 10.1016/S01641212(01)000279

[30] 
S. L. Ho, M. Xie, and T. N. Goh, " A study of the connectionist models for software reliability prediction,” Computers and Mathematics with Applications, vol. 46, pp. 1037–1045, 2003. doi: 10.1016/S08981221(03)901179

[31] 
L. Tian and A. Noore, " Online prediction of software reliability using an evolutionary connectionist model,” J. Systems and Software, vol. 77, pp. 173–180, 2005. doi: 10.1016/j.jss.2004.08.023

[32] 
Q. P. Hu, M. Xie, S. H. Ng, and G. Levitin, " Robust recurrent neural network modeling for software fault detection and correction prediction,” Reliability Engineering and System Safety, vol. 92, pp. 332–340, 2007. doi: 10.1016/j.ress.2006.04.007

[33] 
N. R. Kiran and V. Ravi, " Software reliability prediction by soft computing techniques,” J. Systems and Software, vol. 81, no. 4, pp. 576–583, 2008. doi: 10.1016/j.jss.2007.05.005

[34] 
P. K. Kapur, V. S. S. Yadavalli, S. K. Khatri, and M. Basirzadeh, " Enhancing software reliability of a complex software system architecture using artificial neuralnetworks ensemble,” Int. J. Reliability Quality and Safety Engineering, vol. 18, no. 3, pp. 271–284, 2011. doi: 10.1142/S0218539311004135

[35] 
R. Mohanty, V. Ravi, and M. R. Patra, " Hybrid intelligent systems for predicting software reliability,” Applied Soft Computing, vol. 13, no. 1, pp. 189–200, 2013. doi: 10.1016/j.asoc.2012.08.015

[36] 
O. F. Arar and K. Ayan, " Software defect prediction using costsensitive neural network,” Applied Soft Computing, vol. 33, pp. 263–277, 2015. doi: 10.1016/j.asoc.2015.04.045

[37] 
P. Roy, G. S. Mahapatra, and K. N. Dey, " An efficient particle swarm optimizationbased neural network approach for software reliability assessment,” Int. J. Reliability,Quality and Safety Engineering, vol. 24, no. 4, pp. 1–24, 2017.

[38] 
Y. Shi and R. C. Eberhart, " A modified particle swarm optimizer,” in Proc. IEEE World Congr. on Computational Intelligence, 1998, pp. 69–73.

[39] 
Y. Marinakis, A. Migdalas, and A. Sifaleras, " A hybrid particle swarm optimization – variable neighborhood search algorithm for constrained shortest path problems,” European J. Operational Research, vol. 261, pp. 819–834, 2017. doi: 10.1016/j.ejor.2017.03.031

[40] 
C. Jin and S. W. Jin, " Parameter optimization of software reliability growth model with Sshaped testingeffort function using improved swarm intelligent optimization,” Applied Soft Computing, vol. 40, pp. 283–291, 2016. doi: 10.1016/j.asoc.2015.11.041

[41] 
P. N. Misra, " Softawre reliability analysis,” IBM Systems J., vol. 22, pp. 262–270, 1983. doi: 10.1147/sj.223.0262

[42] 
J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability Measurement, Prediction and Application, New York, McGrawHill, 1987.
