A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 6 Issue 2
Mar.  2019

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Magdi S. Mahmoud and Mojeed O. Oyedeji, "Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 364-378, Mar. 2019. doi: 10.1109/JAS.2019.1911375
Citation: Magdi S. Mahmoud and Mojeed O. Oyedeji, "Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey," IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 364-378, Mar. 2019. doi: 10.1109/JAS.2019.1911375

Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey

doi: 10.1109/JAS.2019.1911375
Funds:

the Deanship of Scientific Research (DSR) at KFUPM Through Distinguished Professorship Research IN161065

More Information
  • The wind turbine (WT) is a renewable energy conversion device for transformation of kinetic energy from the wind to mechanical energy for subsequent use in different forms. This paper focuses on wind turbine control design strategies. The content is divided into the following parts: 1) An overview of the recent advances that have been made in the application of adaptive and model predictive control strategies for wind turbines. 2) Summarizes some important aspects of modeling of wind turbines for control studies. 3) Provides an outlook on the application of adaptive model predictive control for uncertain systems to stimulate new research interests for wind turbine systems. We provide an overall picture of the research results with evaluation of the merits/demerits.

     

  • loading
  • [1]
    Z. Z. Yang, Y. Y. Li, and J. E. Seem, "Multi-model predictive control for wind turbine operation under meandering wake of upstream turbines, " Contr. Eng. Pract., vol. 45, pp. 37-45, Dec. 2015. https://www.sciencedirect.com/science/article/abs/pii/S096706611530006X
    [2]
    L. M. Fernández, J. R. Saenz, and F. Jurado, "Dynamic models of wind x farms with fixed speed wind turbines, " Renew. Energy, vol. 31, no. 8, pp. 1203-1230, Jul. 2006. https://www.sciencedirect.com/science/article/pii/S0960148105001758
    [3]
    F. D. Bianchi, R. J. Mantz, and H. De Battista, Wind Turbine Control System:Principles, Modelling and Gain Scheduling Design. London, UK:Springer-Verlag, 2007. https://www.springer.com/us/book/9781846284922
    [4]
    H. R. Zhao, Q. W. Wu, C. N. Rasmussen, and M. Blanke, "L1 adaptive speed control of a small wind energy conversion system for maximum power point tracking, " IEEE Trans. Energy Convers., vol. 29, no. 3, pp. 576-584, Sep. 2014. https://www.researchgate.net/publication/278083694_L-1_Adaptive_Speed_Control_of_a_Small_Wind_Energy_Conversion_System_for_Maximum_Power_Point_Tracking
    [5]
    H. Jafarnejadsani and J. Pieper, "Gain-scheduled $\ell_1$ optimal control of variable-speed-variable-pitch wind turbines, " IEEE Trans. Contr. Syst. Technol., vol. 23, no. 1, pp. 372-379, Jan. 2015.
    [6]
    E. Iyasere, M. Salah, D. Dawson, and J. Wagner, "Nonlinear robust control to maximize energy capture in a variable speed wind turbine, " in Proc. American Control Conf., Seattle, WA, USA, 2008, pp. 1824- 1829. doi: 10.1007%2Fs11768-012-0315-4
    [7]
    C. Sloth, T. Esbensen, M. O. K. Niss, J. Stoustrup, and P. F. Odgaard, "Robust LMI-based control of wind turbines with parametric uncertainties, " in Proc. 18th IEEE Int. Conf. Control Applications, St. Petersburg, Russia, 2009, pp. 776-781. https://ieeexplore.ieee.org/document/5281171
    [8]
    E. B. Muhando, T. Senjyu, N. Urasaki, A. Yona, and T. Funabashi, "Robust predictive control of variable-speed wind turbine generator by self-tuning regulator, " in Proc. IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 2007, pp. 1-8. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004275651
    [9]
    H. Aschemann and J. Kersten, "Control and robust tower oscillation damping for a wind turbine equipped with a hydrostatic drive train and a synchronous generator, " in Proc. 21st Int. Conf. Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2016, pp. 1051-1056.
    [10]
    K. B. Alaoui, E. M. Boufounas, and I. Boumhidi, "Integral sliding mode control without reaching phase for a variable speed wind turbine, " in Proc. Int. Conf. Electrical and Information Technologies (ICEIT), Tangiers, Morocco, 2016, 78-83.
    [11]
    B. Hamane, M. L. Doumbia, M. Bouhamida, and M. Benghanem, "Control of wind turbine based on DFIG using fuzzy-PI and sliding mode controllers, " in Proc. 9th Int. Conf. Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Monaco, 2014. https://www.researchgate.net/publication/269298961_Control_of_wind_turbine_based_on_DFIG_using_Fuzzy-PI_and_Sliding_Mode_controllers
    [12]
    X. R. Zhu, S. P. Liu, and Y. Wang, "Second-order sliding-mode control of DFIG-based wind turbines, " in Proc. 3rd Renewable Power Generation Conf. (RPG 2014), Naples, Italy, 2014, pp. 1-6.
    [13]
    S. Rajendran and D. Jena, "Backstepping sliding mode control for variable speed wind turbine, " in Proc. Ann. IEEE India Conf. (INDICON), Pune, India, 2014, pp. 1-6. doi: 10.1007%2Fs40565-015-0106-2
    [14]
    X. X. Yin, Y. G. Lin, W. Li, H. W. Liu, and Y. J. Gu, "Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines, " ISA Trans., vol. 58, pp. 629-634, Sep. 2015. https://www.sciencedirect.com/science/article/abs/pii/S0019057815001743
    [15]
    H. M. Nguyen, "Advanced control strategies for wind energy conversion systems, " Ph.D. dissertation, School Eng., College Sci. Eng., Idaho State Univ., 2013. https://www.researchgate.net/publication/261384649_Advanced_control_strategies_for_wind_energy_systems_An_overview
    [16]
    J. G. Slootweg, H. Polinder, and W. L. Kling, "Dynamic modelling of a wind turbine with doubly fed induction generator, " in Proc. IEEE Power Engineering Society Summer Meeting, Vancouver, BC, Canada, 2001, vol. 1, pp. 644-649. view-source:http://localhost/xml_insert_formula.php
    [17]
    N. P. W. Strachan and D. Jovcic, "Dynamic modelling, simulation and analysis of an offshore variable-speed directly-driven permanentmagnet wind energy conversion and storage system (WECSS), " in Proc. Europe OCEANS, Aberdeen, UK, 2007, pp. 1-6. https://wenku.baidu.com/view/e01d806825c52cc58bd6be64.html
    [18]
    M. Marinelli, A. Morini, A. Pitto, and F. Silvestro, "Modeling of doubly fed induction generator (DFIG) equipped wind turbine for dynamic studies, " in Proc. 43rd Int. Universities Power Engineering Conf. (UPEC), Padova, Italy, 2008, pp. 1-6. http://orbit.dtu.dk/fedora/objects/orbit:114495/datastreams/file_10710085/content
    [19]
    E. S. Abdin and W. Xu, "Control design and dynamic performance analysis of a wind turbine-induction generator unit, " IEEE Trans. Energy Convers., vol. 15, no. 1, pp. 91-96, Mar. 2000. https://ieeexplore.ieee.org/document/849122
    [20]
    S. El Aimani, "Modeling and control structures for variable speed wind turbine", in Proc. Int. Conf. Multimedia Computing and Systems (ICMCS), Ouarzazate, Morocco, 2011, pp. 1-5.
    [21]
    I. Munteanu, N. A. Cutululis, A. I. Bratcu, and E. Ceangǎ, Optimal Control of Wind Energy Systems:Towards a Global Approach. London, UK:Springer, 2008. https://www.springer.com/us/book/9781848000797
    [22]
    Z. Xu and Z. P. Pan, "Influence of different flexible drive train models on the transient responses of DFIG wind turbine, " in Proc. Int. Conf. Electrical Machines and Systems, Beijing, China, 2011, pp. 1-6. https://www.researchgate.net/publication/261352479_Influence_of_different_flexible_drive_train_models_on_the_transient_responses_of_DFIG_wind_turbine
    [23]
    Y. Guo, "Control and optimization of variable-speed wind turbines and large-scale wind farms, " Ph.D. dissertation, School Electr. Comput. Eng., Univ. Oklahoma, Norman, Oklahoma, 2012.
    [24]
    A. M. Kassem, "Modeling and control design of a stand alone wind energy conversion system based on functional model predictive control, " Energy Syst., vol. 3, no. 3, pp. 303-323, Sep. 2012.
    [25]
    H. W. Kim, S. S. Kim, and H. S. Ko, "Modeling and control of PMSGbased variable-speed wind turbine, " Electr. Power Syst. Res., vol. 80, no. 1, pp. 46-52, Jan. 2010. https://www.sciencedirect.com/science/article/abs/pii/S0378779609001771
    [26]
    J. Jonkmann, S. Butterfield, W. Musial, and G. Scott, "Definition of a 5-MW reference wind turbine for offshore system development, " Natl. Renew. Energy Labor., Golden, CO, USA, Tech. Rep. TP-500-38060, Feb. 2007.
    [27]
    T. J. Larsen and A. M. Hansen, "How 2 HAWC2 the user's manual, " Riso National Laboratory, Roskilde, Denmark, R-1597 (ver. 3-1), Dec. 2007. http://orbit.dtu.dk/fedora/objects/orbit:79840/datastreams/file_7703110/content
    [28]
    L. Bottasso and A. Croce, "Cp-lambda user manual, " Dipartimento di IngnegneriaAerospaziale, Politecnico di Milano, Milano, 2009.
    [29]
    H. Li, K. L. Shi, and P. G. McLaren, "Neural-network-based sensorless maximum wind energy capture with compensated power coefficient, " IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1548-1556, Nov.-Dec. 2005. https://ieeexplore.ieee.org/document/1542308
    [30]
    A. G. Abo-Khalil, D. C. Lee, and J. K. Seok, "Variable speed wind power generation system based on fuzzy logic control for maximum output power tracking, " in Proc. 35th Ann. Power Electronics Specialists Conf., Aachen, Germany, 2004, vol. 3, pp. 2039-2043. https://ieeexplore.ieee.org/document/1355431
    [31]
    C. H. Shao, X. J. Chen, and Z. H. Liang, "Application research of maximum wind-energy tracing controller based adaptive control Strategy in WECS, " in Proc. CES/IEEE 5th Int. Power Electronics and Motion Control Conf. (IPEMC 2006), Shanghai, China, 2006. https://ieeexplore.ieee.org/document/4778055
    [32]
    A. B. Raju, B. G. Fernandes, and K. Chatterjee, "A UPF power conditioner with maximum power point tracker for grid connected variable speed wind energy conversion system, " in Proc. 1st Int. Conf. Power Electronics Systems and Applications (PESA 2004), Hong Kong, China, 2004, pp. 107-112. https://www.researchgate.net/publication/4143341_A_UPF_power_conditioner_with_maximum_power_point_tracker_for_grid_connected_variable_speed_wind_energy_conversion_system
    [33]
    R. M. Hilloowala and A. M. Sharaf, "A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme, " IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 57-65, Jan.-Feb. 1996. https://ieeexplore.ieee.org/document/485813
    [34]
    G. Hua and Y. Geng, "A novel control strategy of MPPT taking dynamics of wind turbine into account, " in Proc. 37th IEEE Power Electronics Specialists Conf. PESC'06, Jeju, South Korea, 2006. https://www.researchgate.net/publication/224653261_A_Novel_Control_Strategy_of_MPPT_Taking_Dynamics_of_Wind_Turbine_into_Account
    [35]
    V. Galdi, A. Piccolo, and P. Siano, "Designing an adaptive fuzzy controller for maximum wind energy extraction, " IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 559-569, Jun. 2008. https://ieeexplore.ieee.org/document/4458230
    [36]
    Q. Wang and L. C. Chang, "An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems, " IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1242-1249, Sep. 2004. https://ieeexplore.ieee.org/document/1331485
    [37]
    E. Koutroulis and K. Kalaitzakis, "Design of a maximum power tracking system for wind-energy-conversion applications, " IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, Apr. 2006. https://www.tuc.gr/fileadmin/users_data/elci/Kalaitzakis/J.33.pdf
    [38]
    M. Matsui, D. H. Xu, L. Y. Kang, and Z. Yang, "Limit cycle based simple MPPT control scheme for a small sized wind turbine generator system-principle and experimental verification, " in Proc. 4th Int. Power Electronics and Motion Control Conf., Xi'an, China, 2004, vol. 3, pp. 1746-1750.
    [39]
    Y. Higuchi, N. Yamamura, M. Ishida, and T. Hori, "An improvement of performance for small-scaled wind power generating system with permanent magnet type synchronous generator, " in Proc. 26th Ann. Conf. IEEE Ind. Electronics Society, IECON, Nagoya, Japan, 2000, pp. 1039-1043. https://ieeexplore.ieee.org/document/972265
    [40]
    S. T. Wang, Z. Y. Qi, and T. Undeland, "State space averaging modeling and analysis of disturbance injection method of MPPT for small wind turbine generating systems, " in Proc. Asia-Pacific Power and Energy Engineering Conf., Wuhan, China, 2009, pp. 1-5.
    [41]
    R. J. Wai, C. Y. Lin, and Y. R. Chang, "Novel maximum-power extraction algorithm for PMSG wind generation system, " IET Electric Power Appl., vol. 1, no. 2, pp. 275-283, Mar. 2007. https://www.researchgate.net/publication/3478286_Novel_maximum-power-extraction_algorithm_for_PMSG_wind_generation_system
    [42]
    Y. Q. Jia, Z. Q. Yang, and B. G. Cao, "A new maximum power point tracking control scheme for wind generation, " in Proc. Int. Conf. Power System Technology, Kunming, China, 2002, pp. 144-148.
    [43]
    J. Hui and A. Bakhshai, "A new adaptive control algorithm for maximum power point tracking for wind energy conversion systems, " in Proc. IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 4003-4007. https://ieeexplore.ieee.org/document/4592580
    [44]
    J. Hui and A. Bakhshai, "Adaptive algorithm for fast maximum power point tracking in wind energy systems, " in Proc. 34th Ann. Conf. IEEE Industrial Electronics, Orlando, FL, USA, 2008, pp. 2119-2124. https://ieeexplore.ieee.org/document/7407356
    [45]
    M. G. Molina and P. E. Mercado, "A new control strategy of variable speed wind turbine generator for three-phase grid-connected applications, " in Proc. IEEE/PES Transmission and Distribution Conf. and Exposition:Latin America, Bogota, Colombia, 2008, pp. 1-8. https://ieeexplore.ieee.org/document/4641870?arnumber=4641870
    [46]
    T. Tafticht, K. Agbossou, and A. Cheriti, "DC bus control of variable speed wind turbine using a buck-boost converter, " in Proc. IEEE Power Eng. Society General Meeting, Montreal, Que., Canada, 2006. https://ieeexplore.ieee.org/document/1709469
    [47]
    J. M. Kwon, J. H. Kim, S. H. Kwak, and H. H. Lee, "Optimal power extraction algorithm for DTC in wind power generation systems, " in Proc. IEEE Int. Conf. Sustainable Energy Technology (ICEST 2008), Singapore, 2008, pp. 639-643. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004747085
    [48]
    C. Patsios, A. Chaniotis, and A. Kladas, "A hybrid maximum power point tracking system for grid-connected variable speed windgenerators, " in Proc. IEEE Power Electronics Specialists Conf., Rhodes, Greece, 2008, pp. 1749-1754. https://www.researchgate.net/publication/224323777_A_Hybrid_Maximum_Power_Point_Tracking_System_for_Grid-Connected_Variable_Speed_Wind-Generators
    [49]
    C. Patsios, A. Chaniotis, and A. G. Kladas, "ANN-based maximum power point tracking control of variable speed wind energy conversion systems, " in Proc. 18th IEEE Int. Conf. Control Applications, 2009.
    [50]
    S. Bououden, M. Chadli, S. Filali, and A. E. Hajjaji, "Fuzzy model based multivariable predictive control of a variable speed wind turbine:LMI approach, " Renew. Energy, vol. 37, no. 1, pp. 434-439, Jan. 2012. https://www.sciencedirect.com/science/article/pii/S096014811100317X
    [51]
    M. A. Evans, M. Cannon, and B. Kouvaritakis, "Robust MPC tower damping for variable speed wind turbines, " IEEE Trans. Contr. Syst. Technol., vol. 23, no. 1, pp. 290-296, Jan. 2015. https://ieeexplore.ieee.org/document/6778765
    [52]
    D. Castaignet, I. Couchman, N. K. Poulsen, T. Buhl, and J. J. WedelHeinen, "Frequency-weighted model predictive control of trailing edge flaps on a wind turbine blade, " IEEE Trans. Contr. Syst. Technol., vol. 21, no. 4, pp. 1105-1116, Jul. 2013. https://ieeexplore.ieee.org/document/6525363
    [53]
    C. L. Bottasso, P. Pizzinelli, C. E. D. Riboldi, and L. Tasca, "LiDARenabled model predictive control of wind turbines with real-time capabilities, " Renew. Energy, vol. 71, pp. 442-452, Nov. 2014. https://www.sciencedirect.com/science/article/pii/S0960148114003024
    [54]
    L. C. Henriksen, M. H. Hansen, and N. K. Poulsen, "Wind turbine control with constraint handling:a model predictive control approach, " IET Contr. Theory Appl., vol. 6, no. 11, pp. 1722-1734, Jul. 2013. https://www.researchgate.net/publication/260586571_Wind_turbine_control_with_constraint_handling_A_model_predictive_control_approach
    [55]
    R. Galeazzi, K. T. Borup, H. Niemann, N. K. Poulsen, and F. Caponetti, "Adaptive backstepping control of lightweight tower wind turbine, " in Proc. American Control Conf., Chicago, IL, USA, pp. 3058-3065. https://www.researchgate.net/publication/272683944_Adaptive_Backstepping_Control_of_Lightweight_Tower_Wind_Turbine
    [56]
    V. Bobanac and M. Vašak, "Adaptive $H_{\infty}$ control of large wind turbines, " Proc. 2015 IEEE Int. Conf. Industrial Technology (ICIT), Seville, Spain, 2015, pp. 85-92.
    [57]
    C. Vivas, F. Castañ, and F. R. Rubio, "Adaptive $H_{\infty}$ control of variablespeed Wind Turbines with wind speed estimator, " in Proc. European Control Conf., Budapest, Hungary, 2009, pp. 4217-4222.
    [58]
    X. J. Yao, Y. M. Liu, and C. C. Guo, "Adaptive fuzzy sliding-mode control in variable speed adjustable pitch wind turbine, " in Proc. IEEE Int. Conf. Automation and Logistics, Jinan, China, 2007, pp. 313-318, 2007. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004338578
    [59]
    H. Jafarnejadsani, J. Pieper, and J. Ehlers, "Adaptive control of a variable-speed variable-pitch wind turbine using radial-basis function neural network, " IEEE Trans. Contr. Syst. Technol., vol. 21, no. 6, pp. 2264-2272, Nov. 2013. https://ieeexplore.ieee.org/document/6418007
    [60]
    D. W. Xiang, J. C. Turu, S. M. Muratel, and T. Wang, "On-site LVRT testing method for full-power converter wind turbines, " IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 395-403, Jan. 2017. https://www.researchgate.net/publication/310824815_On-site_LVRT_Testing_Method_for_Full_Power_Converter_Wind_Turbines
    [61]
    M. Nasiri and R. Mohammadi, "Peak current limitation for grid side inverter by limited active power in PMSG-based wind turbines during different grid faults, " IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 3 -12, Jan. 2017. https://ieeexplore.ieee.org/document/7486131
    [62]
    J. Mohammadi, S. Afsharnia, S. Vaez-zadeh, and S. Farhangi, "Improved fault ride through strategy for doubly fed induction generator based wind turbines under both symmetrical and asymmetrical grid faults, " IET Renew. Power Generat., vol. 10, no. 8, pp. 1114-1122, Sep. 2016.
    [63]
    H. M. Yassin, H. H. Hanafy, and M. M. Hallouda, "Enhancement low-voltage ride through capability of permanent magnet synchronous generator-based wind turbines using interval type-2 fuzzy control, " IET Renew. Power Generat., vol. 10, no. 3, pp. 339-348, Feb. 2016.
    [64]
    J. N. Sakamuri, Z. H. Rather, J. Rimez, M. Altin, ö. Göksu, and N. A. Cutululis, "Coordinated voltage control in offshore HVDC connected cluster of wind power plants, " IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1592-1601, Oct. 2016. https://ieeexplore.ieee.org/document/7470498
    [65]
    A. Kirakosyan, M. S. El Moursi, P. Kanjiya, and V. Khadkikar, "A nine switch converter-based fault ride through topology for wind turbine applications, " IEEE Trans. Power Delivery, vol. 31, no. 4, pp. 1757- 1766, Aug. 2016. https://ieeexplore.ieee.org/document/7442868
    [66]
    J. B. Hu, Q. Hu, B. Wang, H. Y. Tang, and Y. N. Chi, "Small signal instability of PLL-synchronized type-4 wind turbines connected to high-impedance AC grid during LVRT, " IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1676-1687, Dec. 2016. https://ieeexplore.ieee.org/document/7486001
    [67]
    A. Egea-Àlvarez, M. Aragüés-Peñalba, O. Gomis-Bellmunt, J. Rull-Duran, and A. Sudrià-Andreu, "Sensorless control of a power converter for a cluster of small wind turbines, " IET Renew. Power Generat., vol. 10, no. 5, pp. 721-728, Apr. 2016. https://ieeexplore.ieee.org/document/7456545
    [68]
    S. I. Nanou and S. A. Papathanassiou, "Grid code compatibility of VSC-HVDC connected offshore wind turbines employing power synchronization control, " IEEE Trans. Power Syst., vol. 31, no. 6, pp. 5042-5050, Nov. 2016. https://ieeexplore.ieee.org/abstract/document/7386719
    [69]
    V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, "Highpower wind energy conversion systems:state-of-the-art and emerging technologies, " Proc. IEEE, vol. 103, no. 5, pp. 740-788, May 2015. https://ieeexplore.ieee.org/document/7109820
    [70]
    L. Sun, X. M. Yuan, J. B. Hu, and W. He "Inertial control methods of variable-speed wind turbine:comparative studies, " in Proc. IEEE Power & Energy Society General Meeting, Denver, CO, USA, 2015, pp. 1-5. https://ieeexplore.ieee.org/document/7286577
    [71]
    S. Wang, J. B. Hu, X. M. Yuan, and L. Sun, "On inertial dynamics of virtual-synchronous-controlled DFIG-based wind turbines, " IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1691-1702, Dec. 2015. https://ieeexplore.ieee.org/document/7202890
    [72]
    E. Muljadi, V. Gevorgian, M. Singh, and S. Santoso "Understanding inertial and frequency response of wind power plants, " in Proc. IEEE Power Electronics and Machines in Wind Applications, Denver, CO, USA, 2012, pp. 1-8, 2012. https://www.nrel.gov/docs/fy12osti/55335.pdf
    [73]
    J. Morren, J. Pierik, and S. W. H. de Haan, "Inertial response of variable speed wind turbines, " Electrical Power Syst. Res., vol. 76, no. 11, pp. 980-987, Jul. 2006. https://wenku.baidu.com/view/775b0980ec3a87c24028c459.html
    [74]
    L. Shang, J. B. Hu, X. M. Yuan, and Y. N. Chi "Understanding Inertial Response of Variable-Speed Wind Turbines by Defined Internal Potential Vector, " Energies, vol. 10, pp. 22, Dec. 2016. https://www.researchgate.net/publication/311959232_Understanding_Inertial_Response_of_Variable-Speed_Wind_Turbines_by_Defined_Internal_Potential_Vector
    [75]
    J. B. Hu, H. Nian, B. Hu, Y. K. He, and Z. Q. Zhu, "Direct active and reactive power regulation of DFIG using sliding-mode control approach, " IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1028-1039, Dec. 2010. https://www.researchgate.net/publication/224145525_Direct_Active_and_Reactive_Power_Regulation_of_DFIG_Using_Sliding-Mode_Control_Approach
    [76]
    A. Abdel-Khalik, A. Elserougi, A. Massoud, and S. Ahmed, "A power control strategy for flywheel doubly-fed induction machine storage system using artificial neural network, " Electric. Power Syst. Res., vol. 96, pp. 267-276, Mar. 2013. https://www.sciencedirect.com/science/article/abs/pii/S0378779612003458
    [77]
    A. Yousefi-Talouki, E. Pouresmaeil, and B. N. Jørgensen, "Active and reactive power ripple minimization in direct power control of matrix converter-fed DFIG, " Int. J. Electric. Power Energy Syst., vol. 63, pp. 600-608, Dec. 2014. https://www.sciencedirect.com/science/article/pii/S0142061514003901
    [78]
    P. K. Gayen, D. Chatterjee, and S. K. Goswami, "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator), " Energy, vol. 89, pp. 461-472, Sep. 2015. https://www.sciencedirect.com/science/article/abs/pii/S0360544215007331
    [79]
    E. F. Camacho and C. Bordons, Model Predictive Control. London, UK:Springer-Verlag, 1999.
    [80]
    L. Grune and J. Pannek, Nonlinear Model Predictive Control:Theory and Algorithms. London, UK:Springer-Verlag, 2007.
    [81]
    M. Cannon, "Efficient nonlinear model predictive control algorithms, " Ann. Rev. Contr., vol. 28, no. 2, pp. 229-237, 2004. doi: 10.1016/j.arcontrol.2004.05.001
    [82]
    J. F. Hu, J. G. Zhu, and D. G. Dorrell, "Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications, " IET Renew. Power Generat., vol. 8, no. 6, pp. 687-695, Aug. 2014. https://ieeexplore.ieee.org/document/6867446
    [83]
    R. Aissou, T. Rekioua, D. Rekioua, and A. Tounzi, "Robust nonlinear predictive control of permanent magnet synchronous generator turbine using DSPACE hardware, " Int. J. Hydrogen Energy, vol. 41, no. 45, pp. 21047-21056, Dec. 2016. https://www.sciencedirect.com/science/article/pii/S0360319916309570
    [84]
    A. Koerber and R. King, "Combined feedback-feedforward control of wind turbines using state-constrained model predictive control, " IEEE Trans. Contr. Syst. Technol., vol. 21, no. 4, pp. 1117-1128, Jul. 2013. https://ieeexplore.ieee.org/document/6522174
    [85]
    C. A. Evangelista, A. Pisano, P. Puleston, and E. Usai, "Receding horizon adaptive second-order sliding mode control for doubly-fed induction generator based wind turbine, " IEEE Trans. Contr. Syst. Technol., vol. 25, no. 1, pp. 73-84, Jan. 2017. https://ieeexplore.ieee.org/document/7442098
    [86]
    X. J. Liu and X. B. Kong, "Nonlinear model predictive control for DFIG-based wind power generation, " IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 1046-1055, Oct. 2014. https://ieeexplore.ieee.org/document/6646295
    [87]
    P. F. Odgaard, L. F. S. Larsen, R. Wisniewski, and T. G. Hovgaard, "On using Pareto optimality to tune a linear model predictive controller for wind turbines, " Renew. Energy, vol. 87, pp. 884-891, Mar. 2016. https://www.sciencedirect.com/science/article/pii/S0960148115303463
    [88]
    S. Abulanwar, W. H. Hu, Z. Chen, and F. Iov, "Adaptive voltage control strategy for variable-speed wind turbine connected to a weak network, " IET Renew. Power Generat., vol. 10, no. 2, pp. 238-249, Feb. 2016. https://ieeexplore.ieee.org/document/7395059
    [89]
    K. E. Johnson, L. Y. Pao, M. J. Balas, and L. J. Fingersh, "Control of variable-speed wind turbines:standard and adaptive techniques for maximizing energy capture, " IEEE Contr. Syst. Mag., vol. 26, no. 3, pp. 70-81, Jun. 2006. https://ieeexplore.ieee.org/document/1636311
    [90]
    Q. S. Luo, Q. M. Yang, C. Han, and P. Cheng, "Pitch angle controller of variable-speed wind turbine based on L1 adaptive control theory, " in Proc. Int. Conf. Mechatronics and Control (ICMC), Jinzhou, China, 2014, pp. 955-960.
    [91]
    S. A. Frost, M. J. Balas, and A. D. Wright, "Direct adaptive control of a utility-scale wind turbine for speed regulation, " Int. J. Robust Nonlin. Contr., vol. 19, no. 1, pp. 59-71, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b1a31de9acf98a7622be4ebf03bb4f7e
    [92]
    J. Y. Gong and R. Xie, "Adaptive control of PMSG-based small wind turbines in region Ⅱ, " in Proc. 35th Chinese Control Conf., Chengdu, China, 2016, pp. 8518-8522.
    [93]
    O. Barambones and J. M. G. de Durana, "Adaptive sliding mode control strategy for a wind turbine systems using a HOSM wind torque observer, " in Proc. IEEE Int. Energy Conf. (ENERGYCON), Leuven, Belgium, 2016, pp. 1-6.
    [94]
    K. Shi, C. K. Zhang, X. Zhou, and L. Jiang, "Nonlinear adaptive power control for DFIG-based wind turbine under unbalanced network conditions, " in Proc. IEEE 8th Int. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, 2016, pp. 1496-1502.
    [95]
    M. Koumir, A. El Bakri, and I. Boumhidi, "Optimal control for a variable speed wind turbine based on extreme learning machine and adaptive particle swarm optimization, " in Proc. 5th Int. Conf. Systems and Control, Marrakesh, Morocco, 2016, pp. 151-156.
    [96]
    S. M. Muyeen, A. Al-durra, and H. M. Hasanien, "Application of an adaptive neuro-fuzzy controller for speed control of switched reluctance generator driven by variable speed wind turbine, " in Proc. Modern Electric Power Systems (MEPS), Wroclaw, Poland, 2015, pp. 1-6. https://ieeexplore.ieee.org/document/7477210
    [97]
    A. Tohidi, H. Hajieghrary, and M. A. Hsieh, "Adaptive disturbance rejection control scheme for DFIG-based wind turbine:theory and experiments, " IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2006-2015, May-Jun. 2016.
    [98]
    O. Barambones and J. M. G. de Durana, "Wind turbine control scheme based on adaptive sliding mode controller and observer, " in Proc. IEEE 20th Conf. Emerging Technologies and Factory Automation, Luxembourg, Luxembourg, 2015, pp. 1-7. https://ieeexplore.ieee.org/document/7301531
    [99]
    S. Rajendran and D. Jena, "Adaptive nonsingular terminal sliding mode control for variable speed wind turbine, " in Proc. IEEE 28th Canadian Conf. Electrical and Computer Engineering, Halifax, NS, Canada, 2015, pp. 937-942. https://www.researchgate.net/publication/283102427_Adaptive_nonsingular_terminal_sliding_mode_control_for_variable_speed_wind_turbine
    [100]
    J. Chen, L. Jiang, W. Yao, and Q. H. Wu, "Perturbation estimation based nonlinear adaptive control of a full-rated converter wind turbine for fault ride-through capability enhancement, " IEEE Trans. Power Syst., vol. 29, no. 6, pp. 2733-2743, Nov. 2014. https://ieeexplore.ieee.org/document/6784484
    [101]
    V. Azimi, M. B. Menhaj, and A. Fakharian, "Adaptive control of a wind turbine based on neural networks, " in Proc. 13th Iranian Conf. Fuzzy Systems (IFSC), Qazvin, Iran, 2013, pp. 1-6. https://www.researchgate.net/publication/261156273_Adaptive_control_of_a_wind_turbine_based_on_neural_networks
    [102]
    P. Bagheri and Q. Sun, "Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics, " ISA Trans., vol. 63, pp. 233-241, Jul. 2016. https://www.sciencedirect.com/science/article/abs/pii/S0019057816300532
    [103]
    D. C. Phan and S. Yamamoto, "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking, " Energy, vol. 111, pp. 377-388, Sep. 2016. https://www.sciencedirect.com/science/article/abs/pii/S0360544216306946
    [104]
    A. Hatami and B. Moetakef-Imani, "Innovative adaptive pitch control for small wind turbine fatigue load reduction, " Mechatronics, vol. 40, pp. 137-145, Dec. 2016. https://www.sciencedirect.com/science/article/abs/pii/S0957415816301155
    [105]
    E. Assareh and M. Biglari, "A novel approach to capture the maximum power from variable speed wind turbines using PI controller, RBF neural network and GSA evolutionary algorithm, " Renew. Sustain. Energy Rev., vol. 51, pp. 1023-1037, Nov. 2015.
    [106]
    A. D. Wright, "Modern control design for flexible wind turbines, " Ph.D. dissertation, Dept. Aerosp. Eng. Sci., Univ. Colorado, Colorado, USA, 2003.
    [107]
    P. F. Odgaard, J. Stoustrup, and M. Kinnaert, "Fault tolerant control of wind turbines-a benchmark model, " IFAC Proc. Vol., vol. 42, no. 8, pp. 155-160, 2009. doi: 10.3182/20090630-4-ES-2003.00026
    [108]
    P. F. Odgaard and J. Stoustrup, "Fault tolerant control of wind turbines using unknown input observers, " IFAC Proc. Vol., vol. 45, no.20, pp. 313-318, Jan. 2012. https://www.sciencedirect.com/science/article/pii/S1474667016347735
    [109]
    P. F. Odgaard, C. Damgarrd, and R. Nielsen, "On-line estimation of wind turbine power coefficients using unknown input observers, " IFAC Proc. Vol., vol. 41, no. 2, pp. 10646-10651, 2008. doi: 10.3182/20080706-5-KR-1001.01804
    [110]
    J. Friis, E. Nielsen, J. Bonding, F. D. Adegas, J. Stoustrup, and P. F. Odgaard, "Repetitive model predictive approach to individual pitch control of wind turbines, " in Proc. 50th IEEE Conf. Decision and Control and European Control Conf., Orlando, FL, USA, 2011, pp. 3664-3670.
    [111]
    H. Schulte and E. Gauterin, "Fault-tolerant control of wind turbines with hydrostatic transmission using Takagi-Sugeno and sliding mode techniques, " Ann. Rev. Contr., vol. 40, pp. 82-92, 2015. doi: 10.1016/j.arcontrol.2015.08.003
    [112]
    U. Giger, P. Kühne, and H. Schulte, "Fault tolerant and optimal control of wind turbines with distributed high-speed generators, " Energies, vol. 10, no. 2, pp. 149, Jan. 2017. https://www.researchgate.net/publication/312874113_Fault_Tolerant_and_Optimal_Control_of_Wind_Turbines_with_Distributed_High-Speed_Generators
    [113]
    P. Kühne, F. Pöshke, and H. Schulte, "Fault estimation and fault-tolerant control of the FAST NREL 5-MW reference wind turbine using a proportional multi-integral observer, " Int. J. Adapt. Contr. Sign. Process., vol. 32, no. 4, pp. 568-585, Apr. 2018. doi: 10.1002/acs.2800
    [114]
    F. Pöshke, J. Fortmann, and H. Schulte, "Nonlinear wind turbine controller for variable power generation in full load region, " in Proc. American Control Conf., Seattle, WA, USA, 2017, vol. 32, pp. 1389- 1400.
    [115]
    M. S. Shake and R. J. Patton, "Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model, " Eng. Appl. Artific. Intell., vol. 34, pp. 1-12, Sep. 2014. https://www.sciencedirect.com/science/article/abs/pii/S0952197614000815
    [116]
    F. M. Shi and R. Patton, "An active fault tolerant control approach to an offshore wind turbine model, " Renew. Energy, vol. 75, pp. 788-798, Mar. 2015. https://www.sciencedirect.com/science/article/pii/S0960148114006880
    [117]
    M. Sami and R. J. Patton, "Fault tolerant adaptive sliding mode controller for wind turbine power maximisation, " IFAC Proc. Vol., vol. 45, no. 13, pp. 499-504, 2012. doi: 10.3182/20120620-3-DK-2025.00144
    [118]
    H. Badihi, Y. M. Zhang, and H. Hong, "Fuzzy gain-scheduled active fault-tolerant control of a wind turbine, " J. Franklin Instit., vol. 351, no. 7, pp. 3677-3706, Jul. 2014. https://www.sciencedirect.com/science/article/pii/S0016003213001798
    [119]
    H. Badihi, Y. M. Zhang, and H. Hong, "Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches, " Appl. Energy, vol. 201, pp. 284-307, Sep. 2017.
    [120]
    V. A. Akpan and G. D. Hassapis, "Nonlinear model identification and adaptive model predictive control using neural networks, " ISA Trans., vol. 50, no. 2, pp. 177-194, Apr. 2011. https://www.sciencedirect.com/science/article/abs/pii/S0019057810001308
    [121]
    B. Zhu and X. H. Xia, "Adaptive model predictive control for unconstrained discrete-time linear systems with parametric uncertainties, " IEEE Trans. Autom. Contr., vol. 61, no. 10, pp. 3171-3176, Oct. 2016. https://ieeexplore.ieee.org/document/7347388
    [122]
    O. Bello, Y. Hamam, and K. Djouani, "Fuzzy dynamic modelling and predictive control of a coagulation chemical dosing unit for water treatment plants, " J. Electric. Syst. Inf. Technol., vol. 1, no. 2, pp. 129- 143, Sep. 2014. https://www.researchgate.net/publication/265387854_Fuzzy_dynamic_modelling_and_predictive_control_of_a_coagulation_chemical_dosing_unit_for_water_treatment_plants
    [123]
    T. H. Kim and T. Sugie, "Adaptive receding horizon predictive control for constrained discrete-time linear systems with parameter uncertainties, " Int. J. Contr., vol. 81, no. 1, pp. 62-73, Sep. 2008. https://www.researchgate.net/publication/233369036_Adaptive_receding_horizon_predictive_control_for_constrained_discrete-time_linear_systems_with_parameter_uncertainties
    [124]
    R. Dubay, M. Abu-Ayyad, and J. M. Hernandez, "A nonlinear regression model-based predictive control algorithm, " ISA Trans, vol. 48, no. 2, pp. 62-73, Apr. 2009. https://www.sciencedirect.com/science/article/abs/pii/S0019057808000943
    [125]
    H. Fukushima, T. H. Kim, and T. Sugie, "Adaptive model predictive control for a class of constrained linear systems based on the comparison model, " Automatica, vol. 43, no. 2, pp. 301-308, Feb. 2007. https://www.sciencedirect.com/science/article/pii/S000510980600375X
    [126]
    M. Khazaee, A. H. D. Markazi, and E. Omidi, "Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with boundknown input delay, " ISA Trans., vol. 59, pp. 314-324, Nov. 2015. https://www.sciencedirect.com/science/article/abs/pii/S001905781500244X
    [127]
    S. Bououden, M. Chadli, and H. R. Karimi, "An ant colony optimization-based fuzzy predictive control approach for nonlinear processes, " Inf. Sci., vol. 299, pp. 143-158, Apr. 2015. https://www.sciencedirect.com/science/article/pii/S002002551401161X
    [128]
    V. Adetola, D. DeHaan, and M. Guay, "Adaptive model predictive control for constrained nonlinear systems, " Syst. Contr. Lett., vol. 58, no. 5, pp. 320-326, May 2009. https://www.sciencedirect.com/science/article/pii/S0167691108002120
    [129]
    V. Bobal, M. Kubalcik, P. Dostal, and J. Matejicek, "Adaptive predictive control of time-delay systems, " Comput. Math. Appl., vol. 66, no. 2, pp. 165-176, Aug. 2016.
    [130]
    Y. J. Zhang, T. Y. Chai, H. Wang, J. Fu, L. Y. Zhang, and Y. G. Wang, "An adaptive generalized predictive control method for nonlinear systems based on ANFIS and multiple models, " IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1070-1082, Dec. 2010. https://ieeexplore.ieee.org/document/5535081

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (2415) PDF downloads(254) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return