IEEE/CAA Journal of Automatica Sinica
Citation:  Hossein Aminikhah, Amir Hosein Refahi Sheikhani, Tahereh Houlari and Hadi Rezazadeh, "Numerical Solution of the DistributedOrder Fractional BagleyTorvik Equation," IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 760765, May 2019. doi: 10.1109/JAS.2017.7510646 
[1] 
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science Limited, 2006.

[2] 
I. Podlubny, Fractional Differential Equations. San Diego: Academic Press, 1999.

[3] 
E. ReyesMelo, J. MartinezVega, C. GuerreroSalazar, and U. OrtizMendez, "Application of fractional calculus to the modeling of dielectric relaxation phenomena in polymeric materials, " J. Appl. Polym. Sci., vol. 98, no. 2, pp. 923935, Oct. 2005. doi: 10.1002/app.22057/full

[4] 
R. Schumer, D. A. Benson, M. M. Meerschaert, and S. W. Wheatcraft, "Eulerian derivation of the fractional advectiondispersion equation, " J. Contam. Hydrol., vol. 48, no. 12, pp. 6988, Mar. 2001. http://www.sciencedirect.com/science/article/pii/S0169772200001704

[5] 
M. Caputo, Elasticità e dissipazione. Bologna: Zanichelli, 1969.

[6] 
M. Caputo, "Mean fractionalorderderivatives differential equations and filters, " Annali delloUniversità di Ferrara, vol. 41, no. 1, pp. 7384, Jan. 1995.

[7] 
R. L. Bagley and P. J. Torvik, "On the existence of the order domain and the solution of distributed order equationsPart Ⅰ, " Int. J. Appl. Math., vol. 2, no. 7, pp. 865882, Jan. 2000. http://www.ams.org/mathscinetgetitem?mr=1758200

[8] 
R. L. Bagley and P. J. Torvik, "On the existence of the order domain and the solution of distributed order equationsPart Ⅱ, " Int. J. Appl. Math., vol. 2, no. 8, pp. 965988, Jan. 2000. http://www.ams.org/mathscinetgetitem?mr=1758200

[9] 
M. Caputo, "Linear models of dissipation whose Q is almost frequency independentⅡ, " Geophys. J. Int., vol. 13, no. 5, pp. 529539, May 1967.

[10] 
M. Caputo, "Distributed order differential equations modelling dielectric induction and diffusion, " Fract. Calc. Appl. Anal., vol. 4, no. 4, pp. 421442, Jan. 2001. http://www.ams.org/mathscinetgetitem?mr=1874477

[11] 
H. S. Najafi, A. Refahi Sheikhani, and A. Ansari, "Stability analysis of distributed order fractional differential equations, " Abstr. Appl. Anal., vol. 2011, Article ID 175323, Jul. 2011.

[12] 
H. Aminikhah, A. Refahi Sheikhani, and H. Rezazadeh, "Stability analysis of distributed order fractional Chen system, " Scient. World J., vol. 2013, Article ID 645080, Oct. 2013. http://www.ncbi.nlm.nih.gov/pubmed/24489508

[13] 
K. Diethelm, and N. J. Ford, "Numerical analysis for distributedorder differential equations, " J. Comput. Appl. Math., vol. 225, no. 1, pp. 96104, Mar. 2009. http://www.sciencedirect.com/science/article/pii/S0377042708003464

[14] 
J. T. Katsikadelis, "Numerical solution of distributed order fractional differential equations, " J. Comput. Phys., vol. 259, pp. 1122, Feb. 2014. http://www.sciencedirect.com/science/article/pii/S0021999113007754

[15] 
Z. Jiao, Y. Q. Chen, and I. Podlubny, DistributedOrder Dynamic Systems: Stability, Simulation, Applications and Perspectives. London: Springer, 2012.

[16] 
P. J. Torvik and R. L. Bagley, "On the appearance of the fractional derivative in the behavior of real materials, " J. Appl. Mech., vol. 51, no. 2, pp. 294298, Jun. 1984. http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Journal%20of%20Applied%20Mechanics&volume=51&issue=2&spage=725

[17] 
R. L. Bagley and J. Torvik, "Fractional calculusa different approach to the analysis of viscoelastically damped structures, " AIAA J., vol. 21, no. 5, pp. 741748, May 1983.

[18] 
G. Boole, A Treatise on the Calculus of Finite Differences. London: MacMillan and Company, 1880.

[19] 
X. Cai and F. Liu, "Numerical simulation of the fractionalorder control system, " J. Appl. Math. Comput., vol. 23, no. 12, pp. 229241, Jan. 2007. doi: 10.1007/BF02831971

[20] 
A. Arikoglu and I. Ozkol, "Solution of fractional differential equations by using differential transform method, " Chaos Soliton. Fract., vol. 34, no. 5, pp. 14731481, Dec. 2007.

[21] 
Z. Odibat, M. Momani, and V. S. Ertuk, "Generalized differential transform method: application to differential equations of fractional order, " Appl. Math. Comput., vol. 197, no. 2, pp. 467477, Apr. 2008.

[22] 
I. Petras, Fractionalorder Nonlinear Systems: Modeling, Analysis and Simulation. Berlin Heidelberg: SpringerVerlag, 2011.

[23] 
K. Diethelm and N. J. Ford, "Multiorder fractional differential equations and their numerical solution, " Appl. Math. Comput., vol. 154, no. 3, pp. 621640, Jul. 2004. http://www.sciencedirect.com/science/article/pii/S0096300303007392
