A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 4 Issue 3
Jul.  2017

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Mou Chen, "Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 458-465, July 2017. doi: 10.1109/JAS.2017.7510544
Citation: Mou Chen, "Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer," IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 458-465, July 2017. doi: 10.1109/JAS.2017.7510544

Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer

doi: 10.1109/JAS.2017.7510544
Funds:

This work was partially supported by the National Natural Science Foundation of China 61573184

the Specialized Research Fund for the Doctoral Program of Higher Education 20133218110013

the Six Talents Peak Project of Jainism Province 2012-XRAY-010

the Fundamental Research Funds for the Central Universities NE2016101

More Information
  • In this paper, a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances. A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function. To improve the tracking control performance, a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot. Using the output of the designed disturbance observer, the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot. Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances.

     

  • loading
  • [1]
    H. S. Kang, Y. T. Kim, C. H. Hyun, and M. Park, "Generalized extended state observer approach to robust tracking control for wheeled mobile robot with skidding and slipping, " Int. J. Adv. Robot. Syst., vol. 10, pp. 155, Jan. 2013. https://www.researchgate.net/publication/274622625_Generalized_Extended_State_Observer_Approach_to_Robust_Tracking_Control_for_Wheeled_Mobile_Robot_with_Skidding_and_Slipping
    [2]
    Z. J. Li, J. Deng, R. Q. Lu, Y. Xu, J. J. Bai, and C. Y. Su, "Trajectorytracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach, " IEEE Trans. Syst. Man Cybern.:Syst., vol. 46, no. 6, pp. 740-749, Jun. 2016. https://www.researchgate.net/publication/282454436_Trajectory-Tracking_Control_of_Mobile_Robot_Systems_Incorporating_Neural-Dynamic_Optimized_Model_Predictive_Approach
    [3]
    S. J. Yoo, "Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping, " IET Control Theory Appl., vol. 4, no. 10, pp. 2109-2119, Oct. 2010.
    [4]
    F. J. Kilian, H. Gattringer, and H. Bremer, "Modeling and quasi-static trajectory control of a self-balancing two-wheeled vehicle, " PAMM, vol. 12, no. 1, pp. 75-76, Dec. 2012.
    [5]
    Z. J. Li and J. Luo, "Adaptive robust dynamic balance and motion controls of mobile wheeled inverted pendulums, " IEEE Trans. Control Syst. Technol., vol. 17, no. 1, pp. 233-241, Jan. 2009.
    [6]
    N. Q. Hoang, "On modelling and control design for self-balanced twowheel vehicle, " Vietnam J. Mech., vol. 30, no. 3, pp. 158-166, 2008. https://www.researchgate.net/publication/287565433_ON_MODELLING_AND_CONTROL_DESIGN_FOR_SELF-BALANCED_TWO-WHEEL_VEHICLE
    [7]
    N. N. Son and H. P. H. Anh, "Adaptive backstepping self-balancing control of a two-wheel electric scooter, " Int. J. Adv. Robot. Syst., vol. 11, pp. 165, Jan. 2014.
    [8]
    C. H. Chen, J. H. Jean, and D. X. Xu, "Application of fuzzy control for self-balancing two-wheel vehicle, " in Proc. 2011 Int. Conf. Machine Learning and Cybernetics, Guilin, China, 2011, pp. 1204-1209. https://www.researchgate.net/publication/221544301_Application_of_fuzzy_control_for_self-balancing_two-wheel_vehicle
    [9]
    C. C. Tsai, H. C. Huang, and S. C. Lin, "Adaptive neural network control of a self-balancing two-wheeled scooter, " IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1420-1428, Apr. 2010.
    [10]
    S. C. Lin, C. C. Tsai, and H. C. Huang, "Adaptive robust self-balancing and steering of a two-wheeled human transportation vehicle, " J. Intell. Robot. Syst., vol. 62, no. 1, pp. 103-123, Apr. 2011.
    [11]
    C. G. Yang, Z. J. Li, R. X. Cui, and B. G. Xu, "Neural network-based motion control of an underactuated wheeled inverted pendulum model, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 11, pp. 2004-2016, Nov. 2014.
    [12]
    Z. J. Li and Y. N. Zhang, "Robust adaptive motion/force control for wheeled inverted pendulums, " Automatica, vol. 46, no. 8, pp. 1346-1353, Aug. 2010.
    [13]
    X. Y. Lu and S. K. Spurgeon, "Robust sliding mode control of uncertain nonlinear systems, " Syst. Control Lett., vol. 32, no. 2, pp. 75-90, Nov. 1997.
    [14]
    R. M. Hirschorn, "Generalized sliding-mode control for multi-input nonlinear systems, " IEEE Trans. Automat. Control, vol. 51, no. 9, pp. 1410-1422, Sep. 2006.
    [15]
    S. H. Ding and W. X. Zheng, "Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation, " Int. J. Robust Nonlinear Control, vol. 26, no. 9, pp. 1857-1872, Jun. 2016.
    [16]
    R. A. Rahman, L. He, and N. Sepehri, "Design and experimental study of a dynamical adaptive backstepping-sliding mode control scheme for position tracking and regulating of a low-cost pneumatic cylinder, " Int. J. Robust Nonlinear Control, vol. 26, no. 4, pp. 853-875, Mar. 2016.
    [17]
    M. K. Khan and S. K. Spurgeon, "Robust MIMO water level control in interconnected twin-tanks using second order sliding mode control, " Control Eng. Pract., vol. 14, no. 4, pp. 375-386, Apr. 2006.
    [18]
    K. W. Lee and S. N. Singh, "A higher-order sliding mode three-axis solar pressure satellite attitude control system, " J. Aerosp. Eng., vol. 29, no. 1, pp. 04015019, Jan. 2016.
    [19]
    T. Elmokadem, M. Zribi, and K. Youcef-Toumi, "Trajectory tracking sliding mode control of underactuated AUVs, " Nonlinear Dyn., vol. 84, no. 2, pp. 1079-1091, Apr. 2016.
    [20]
    M. Y. Cui, W. Liu, H. Z. Liu, H. L. Jiang, and Z. P. Wang, "Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties, " Nonlinear Dyn., vol. 83, no. 1-2, pp. 667-683, Jan. 2016.
    [21]
    C. C. Yih, "Sliding-mode velocity control of a two-wheeled selfbalancing vehicle, " Asian J. Control, vol. 16, no. 6, pp. 1880-1890, Nov. 2014.
    [22]
    W. H. Chen, D. J. Ballance, P. J. Gawthrop, J. J. Gribble, and J. O'Reilly, "Nonlinear PID predictive controller, " IEE Proc.-Control Theory Appl., vol. 146, no. 6, pp. 603-611, Nov. 1999.
    [23]
    W. H. Chen, D. J. Ballance, P. J. Gawthrop, and J. O'Reilly, "A nonlinear disturbance observer for robotic manipulators, " IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 932-938, Aug. 2000. https://www.researchgate.net/publication/3841632_A_nonlinear_disturbance_observer_for_two_link_robotic_manipulators
    [24]
    X. J. Wei, H. F. Zhang, and L. Guo, "Composite disturbance-observerbased control and terminal sliding mode control for uncertain structural systems, " Int. J. Syst. Sci., vol. 40, no. 10, pp. 1009-1017, Oct. 2009.
    [25]
    J. Yang, W. H. Chen, and S. H. Li, "Robust autopilot design of uncertain bank-to-turn missiles using state-space disturbance observers, " Proc. Inst. Mech. Eng. Part G:J. Aerosp. Eng., vol. 226, no. 1, pp. 97-107, Jan. 2012.
    [26]
    L. Guo and W. H. Chen, "Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, " Int. J. Robust Nonlinear Control, vol. 15, no. 3, pp. 109-125, Feb. 2005.
    [27]
    J. Yang, S. H. Li, and X. H. Yu, "Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, " IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 160-169, Jan. 2013.
    [28]
    W. He, S. Zhang, and S. S. Ge, "Boundary output-feedback stabilization of a Timoshenko beam using disturbance observer, " IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5186-5194, Nov. 2013.
    [29]
    S. H. Li and J. Yang, "Robust autopilot design for bank-to-turn missiles using disturbance observers, " IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 1, pp. 558-579, Jan. 2013. https://www.researchgate.net/publication/3650643_Robust_bank-to-turn_missile_autopilot_design
    [30]
    X. J. Wei and L. Guo, "Composite disturbance-observer-based control and terminal sliding mode control for nonlinear systems with disturbances, " Int. J. Control, vol. 82, no. 6, pp. 1082-1098, May 2009. http://cn.bing.com/search?q=Composite+disturbance-observer-based+control+and+termin&go=%E6%90%9C%E7%B4%A2&qs=n&form=QBRE&sp=-1&pq=composite+disturbance-observer-based+control+and+termin&sc=0-55&sk=&cvid=9407BD27399A4160B4EEFF623E66A01E
    [31]
    M. Chen and W. H. Chen, "Sliding mode control for a class of uncertain nonlinear system based on disturbance observer, " Int. J. Adapt. Control Signal Process., vol. 24, no. 1, pp. 51-64, Jan. 2010.
    [32]
    J. Yang, W. X. Zheng, S. H. Li, B. Wu, and M. Cheng, "Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer, " IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5807-5816, Sep. 2015.
    [33]
    M. Chen, "Disturbance Attenuation tracking control for wheeled mobile robots with skidding and slipping, " IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3359-3368, Apr. 2017.
    [34]
    Z. J. Li, C. Y. Su, L. Y. Wang, Z. T. Chen, and T. Y. Chai, "Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation, " IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5763-5775, Sep. 2015.
    [35]
    J. Huang, S. Ri, L. Liu, Y. J. Wang, J. Kim, and G. Pak, "Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum, " IEEE Trans. Control Syst. Technol., vol. 23, no. 6, pp. 2400-2407, Nov. 2015. https://www.researchgate.net/publication/276494344_Nonlinear_Disturbance_Observer-Based_Dynamic_Surface_Control_of_Mobile_Wheeled_Inverted_Pendulum
    [36]
    H. S. Kang, C. H. Hyun, and S. Kim, "Robust tracking control using fuzzy disturbance observer for wheeled mobile robots with skidding and slipping, " Int. J. Adv. Robot. Syst., vol. 11, pp. 75, Jan. 2014. https://www.researchgate.net/publication/272922079_Robust_Tracking_Control_Using_Fuzzy_Disturbance_Observer_for_Wheeled_Mobile_Robots_with_Skidding_and_Slipping
    [37]
    G. T. LTD, Googol Technology Self-balancing Robot GBOT2001 User Manual V2014B, 2014.
    [38]
    Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A stable tracking control method for an autonomous mobile robot, " in Proc. IEEE Int. Conf. Robotics and Automation, Cincinnati, OH, USA, 1990, pp. 384-389. https://www.researchgate.net/publication/253027150_A_Stable_Tracking_Control_Method_for_an_Autonomous_Welding_Mobile_Robot
    [39]
    J. Y. Xu and P. R. Zhang, "Research on trajectory tracking control of nonholonomic wheeled mobile robots, " J. Univ. Sci. Technol. China, vol. 34, no. 3, pp. 376-380, Jun. 2004.
    [40]
    S. S. Ge and C. Wang, "Direct adaptive NN control of a class of nonlinear systems, " IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 214-221, Jan. 2002.
    [41]
    D. Ginoya, P. D. Shendge, and S. B. Phadke, "Sliding mode control for mismatched uncertain systems using an extended disturbance observer, " IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1983-1992, Apr. 2014.
    [42]
    S. Ri, J. Huang, C. J. Tao, M. Ri, Y. Ri, and D. Han, "A highorder disturbance observer based sliding mode velocity control of mobile wheeled inverted pendulum systems, " in Proc. 201612th World Congress on Intelligent Control and Automation, Guilin, China, 2016, pp. 461-466. https://www.researchgate.net/publication/308988276_A_high-order_disturbance_observer_based_sliding_mode_velocity_control_of_mobile_wheeled_inverted_pendulum_systems

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (1821) PDF downloads(490) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return