IEEE/CAA Journal of Automatica Sinica
Citation: | Juncheng Li, Laizhong Song and Chengzhi Liu, "The Cubic Trigonometric Automatic Interpolation Spline," IEEE/CAA J. Autom. Sinica, vol. 5, no. 6, pp. 1136-1141, Nov. 2018. doi: 10.1109/JAS.2017.7510442 |
[1] |
X. A. Han, Y. C. Ma, and X. L. Huang, "The cubic trigonometric Bézier curve with two shape parameters, " Appl. Math. Lett., vol. 22, no. 2, pp. 226-231, Feb. 2009. http://www.sciencedirect.com/science/article/pii/S0893965908001262
|
[2] |
U. Bashir, M. Abbsa, and J. M. Ali, "The G2 and C2 rational quadratic trigonometric Bézier curve with two shape parameters with applications, " Appl. Math. Comput., vol. 219, no. 20, pp. 10183-10197, Jun. 2013. http://www.ams.org/mathscinet-getitem?mr=3056720
|
[3] |
X. L. Han, "Normalized B-basis of the space of trigonometric polynomials and curve design, " Appl. Math. Comput., vol. 215, pp. 336-348, Jan. 2015. http://www.sciencedirect.com/science/article/pii/S0096300314016026
|
[4] |
U. Bashir and J. M. Ali, "Rational cubic trigonometric Bézier curve with two shape parameters, " Comput. Appl. Math., vol. 35, no. 1, pp. 285-300, Apr. 2016. doi: 10.1007/s40314-014-0194-z
|
[5] |
M. Dube and R. Sharma, "Quadratic NUAT B-spline curves with multiple shape parameters, " Int. J. Mach. Intell., vol. 3, no. 1, pp. 18-24, Jun. 2011. http://connection.ebscohost.com/c/articles/65528057/quadratic-nuat-b-spline-curves-multiple-shape-parameters
|
[6] |
X. L. Han and Y. P. Zhu, "Curve construction based on five trigonometric blending functions, " BIT Numer. Math., vol. 52, no. 4, pp. 953-979, Dec. 2012. doi: 10.1007%2Fs10543-012-0386-0
|
[7] |
C. Bracco, D. Berdinsky, D. Cho, M. Oh, and T. Kim, "Trigonometric generalized T-splines, " Comput. Methods Appl. Mech. Eng., vol. 268, pp. 540-556, Jan. 2014. http://www.sciencedirect.com/science/article/pii/S0045782513002429
|
[8] |
L. L. Yan, "Cubic trigonometric nonuniform spline curves and surfaces, " Math. Probl. Eng., vol. 2016, Article No. 7067408, Jan. 2016. doi: 10.1155/2016/7067408
|
[9] |
J. Y. Du, H. L. Han, and G. X. Jin, "On trigonometric and paratrigonometric Hermite interpolation, " J. Approxim. Theory, vol. 131, no. 1, pp. 74-99, Nov. 2004. http://www.sciencedirect.com/science/article/pii/S0021904504001510
|
[10] |
X. L. Han, "Piecewise trigonometric Hermite interpolation, " Appl. Math. Comput., vol. 268, pp. 616-627, Oct. 2015. http://www.sciencedirect.com/science/article/pii/S0096300315009091
|
[11] |
B. Y. Su and J. Q. Tan, "A family of quasi-cubic blended splines and applications, " J. Zhejiang Univ. Sci. A, vol. 7, no. 9, pp. 1550-1560, Sep. 2006. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZDYG200609014&dbname=CJFD&dbcode=CJFQ
|
[12] |
L. L. Yan and J. F. Liang, "A class of algebraic-trigonometric blended splines, " J. Comput. Appl. Math., vol. 235, no. 6, pp. 1713-1729, Jan. 2011. https://www.deepdyve.com/lp/elsevier/a-class-of-algebraic-trigonometric-blended-splines-Ig8d5JeTge
|