A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 5 Issue 4
Jul.  2018

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Guodong Zhao, Yuzhen Wang and Haitao Li, "A Matrix Approach to the Modeling and Analysis of Networked Evolutionary Games With Time Delays," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 818-826, July 2018. doi: 10.1109/JAS.2016.7510259
Citation: Guodong Zhao, Yuzhen Wang and Haitao Li, "A Matrix Approach to the Modeling and Analysis of Networked Evolutionary Games With Time Delays," IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 818-826, July 2018. doi: 10.1109/JAS.2016.7510259

A Matrix Approach to the Modeling and Analysis of Networked Evolutionary Games With Time Delays

doi: 10.1109/JAS.2016.7510259
Funds:

the National Natural Science Foundation of China 61503225

the Natural Science Foundation of Shandong Province ZR2015FQ003

the Natural Science Foundation of Shandong Province ZR201709260273

More Information
  • Using the semi-tensor product method, this paper investigates the modeling and analysis of networked evolutionary games (NEGs) with finite memories, and presents a number of new results. Firstly, a kind of algebraic expression is formulated for the networked evolutionary games with finite memories, based on which the behavior of the corresponding evolutionary game is analyzed. Secondly, under a proper assumption, the existence of Nash equilibrium of the given networked evolutionary games is proved and a free-type strategy sequence is designed for the convergence to the Nash equilibrium. Finally, an illustrative example is worked out to support the obtained new results.

     

  • loading
  • [1]
    R. Axelrod and W. D. Hamilton, "The evolution of cooperation, " Science, vol. 211, no. 4489, pp. 1390-1396, Mar. 1981.
    [2]
    M. A. Nowak and R. M. May, "The spatial dilemmas of evolution, " Int. J. Bifurcat. Chaos, vol. 3, no. 1, pp. 35-78, Feb. 1993. http://adsabs.harvard.edu/abs/1993IJBC....3...19E
    [3]
    G. Szabó and C. Töke, "Evolutionary prisoner's dilemma game on a square lattice, " Phys. Rev. E, vol. 58, no. 1, pp. 69-73, Jul. 1998. http://arxiv.org/abs/cond-mat/9710096
    [4]
    R. Sugden, The Economics of Rights, Co-operation and Welfare. Oxford, UK: Blackwell, 1986.
    [5]
    M. A. Nowak and R. M. May, "Evolutionary games and spatial chaos, " Nature, vol. 359, no. 6398, pp. 826-829, Oct. 1992. doi: 10.1038/359826a0
    [6]
    M. G. Zimmermann and V. M. Eguíluz, "Cooperation, social networks, and the emergence of leadership in a prisoner's dilemma with adaptive local interactions, " Phys. Rev. E, vol. 72, no. 5, pp. 056118, Nov. 2005. http://www.ncbi.nlm.nih.gov/pubmed/16383699
    [7]
    D. Z. Cheng, H. S. Qi, F. H. He, T. T. Xu, and H. R. Dong, "Semi-tensor product approach to networked evolutionary games, " Control Theory Technol., vol. 12, no. 2, pp. 198-214, May 2014. doi: 10.1007/s11768-014-0038-9
    [8]
    D. Z. Cheng, H. S. Qi, and Z. Q. Li, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. London, UK: Springer, 2011.
    [9]
    D. Z. Cheng, H. S. Qi, and Y. Zhao, "Analysis and control of Boolean networks: a semi-tensor product approach, " Acta Autom. Sinica, vol. 37, no. 5, pp. 529-540, May 2011. http://en.cnki.com.cn/Article_en/CJFDTotal-MOTO201105004.htm
    [10]
    D. Z. Cheng, "On finite potential games, " Automatica, vol. 50, no. 7, pp. 1793-1801, Jul. 2014.
    [11]
    D. Z. Cheng, T. T. Xu, and H. S. Qi, "Evolutionarily stable strategy of networked evolutionary games, " IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 7, pp. 1335-1345, Jul. 2014. http://ieeexplore.ieee.org/document/6683009/
    [12]
    P. L. Guo, Y. Z. Wang, and H. T. Li, "Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method, " Automatica, vol. 49, no. 11, pp. 3384-3389, Nov. 2013. http://www.sciencedirect.com/science/article/pii/S0005109813004093
    [13]
    D. Z. Cheng, F. H. He, H. S. Qi, and T. T. Xu, "Modeling, analysis and control of networked evolutionary games, " IEEE Trans. Autom. Control, vol. 60, no. 9, pp. 2402-2415, Sep. 2015. http://ieeexplore.ieee.org/document/7042754/
    [14]
    H. T. Li, Y. Z. Wang, and Z. B. Liu, "A semi-tensor product approach to pseudo-Boolean functions with application to Boolean control networks, " Asian J. Control, vol. 16, no. 4, pp. 1073-1081, Jul. 2014, doi: 10.1002/asjc.767.
    [15]
    Y. Zhao, Z. Q. Li, and D. Z. Cheng, "Optimal control of logical control networks, " IEEE Trans. Autom. Control, vol. 56, no. 8, pp. 1766-1776, Aug. 2011.
    [16]
    Y. F. Mu and L. Guo, Optimization and identification in a non-equilibrium dynamic game. In Proc. 48th IEEE Conf. Decision and Control, Held Jointly with 28th Chinese Control Conf., Shanghai, China, 2009, pp. 5750-5755.
    [17]
    R. Gibbons, A Primer in Game Theory. Harlow, UK: Prentice Hall, 1992.
    [18]
    D. Fudenberg and D. K. Levine, The Theory of Learning in Games. Cambridge, MA, USA: MIT Press, 1998.
    [19]
    P. Zhang, Y. W. Fang, X. B. Hui, X. A. Liu, and L. LI, "Near optimal strategy for nonlinear stochastic differential games based on the technique of statistical linearization, " Acta Autom. Sinica, vol. 39, no. 4, pp. 390-399, Apr. 2013. http://www.sciencedirect.com/science/article/pii/S1874102913600385

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (1120) PDF downloads(48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return