IEEE/CAA Journal of Automatica Sinica
Citation:  Matheus J. Lazo and DelfimF.M. Torres, "Variational Calculus With Conformable Fractional Derivatives," IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 340352, Apr. 2017. doi: 10.1109/JAS.2016.7510160 
[1] 
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 (NorthHolland Mathematics Studies). Amsterdam: Elsevier Science, 2006.

[2] 
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: WileyInterscience, 1993.

[3] 
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. San Diego, CA: Academic Press, Inc., 1999.

[4] 
J. T. Machado, V. Kiryakova, and F. Mainardi, "Recent history of fractional calculus, " Commun. Nonlinear Sci. Numer. Simul. , vol. 16, no. 3, pp. 11401153, Mar. 2011. http://www.sciencedirect.com/science/article/pii/S1007570410003205

[5] 
R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, "A new definition of fractional derivative, " J. Comput. Appl. Math. , vol. 264, pp. 6570, Jul. 2014. http://www.sciencedirect.com/science/article/pii/S0377042714000065

[6] 
T. Abdeljawad, "On conformable fractional calculus, " J. Comput. Appl. Math. , vol. 279, pp. 5766, May2015. http://www.sciencedirect.com/science/article/pii/S0377042714004622

[7] 
D. R. Anderson and R. I. Avery, "Fractionalorder boundary value problem with SturmLiouville boundary conditions, " Electron. J. Diff. Equ. , vol. 2015, no. 29, pp. 10, Jan. 2015. http://www.wenkuxiazai.com/doc/6d8cb0076c85ec3a87c2c5c2.html

[8] 
H. Batarfi, J. Losada, J. J. Nieto, and W. Shammakh, "Threepoint boundary value problems for conformable fractional differential equations, " J. Funct. Spaces, vol. 2015, Article ID 706383, 2015. http://www.sciencedirect.com/science/article/pii/S0898122103000981

[9] 
B. Bayour and D. F. M. Torres, "Existence of solution to a local fractional nonlinear differential equation, " J. Comput. Appl. Math. , vol. 312, pp. 127133, Mar. 2017.

[10] 
N. Benkhettou, S. Hassani, and D. F. M. Torres, "A conformable fractional calculus on arbitrary time scales, " J. King Saud Univ. Sci. , vol. 28, no. 1, pp. 9398, Jan. 2016. http://www.sciencedirect.com/science/article/pii/S1018364715000464

[11] 
F. Riewe, "Mechanics with fractional derivatives, " Phys. Rev. E, vol. 55, no. 3, pp. 35813592, Mar. 1997. http://adsabs.harvard.edu/abs/1997PhRvE..55.3581R

[12] 
P. S. Bauer, "Dissipative dynamical systems. I, " Proc. Natl. Acad. Sci. USA, vol. 17, pp. 311314, Jun. 1931. doi: 10.1007%2FBF00276493

[13] 
O. P. Agrawal, "Formulation of EulerLagrange equations for fractional variational problems, " J. Math. Anal. Appl. , vol. 272, no. 1, pp. 368379, Aug. 2002. http://www.sciencedirect.com/science/article/pii/S0022247X02001804

[14] 
R. Almeida and D. F. M. Torres, "Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, " Commun. Nonlinear Sci. Numer. Simul. , vol. 16, no. 3, pp. 14901500, 2011. http://philosophy.wisc.edu/hausman/341/Skill/necsuf.htm

[15] 
D. Baleanu and O. P. Agrawal, "Fractional Hamilton formalism within Caputo's derivative, " Czechoslovak J. Phys. , vol. 56, no. 1011, pp. 10871092, Oct. 2006. doi: 10.1007/s105820060406x

[16] 
J. Cresson, "Fractional embedding of differential operators and Lagrangian systems, " J. Math. Phys. , vol. 48, no. 3, pp. 033504, Mar. 2007. doi: 10.1063/1.2483292

[17] 
M. J. Lazo and D. F. M. Torres, "The DuBoisReymond fundamental lemma of the fractional calculus of variations and an EulerLagrange equation involving only derivatives of Caputo, " J. Optim. Theory Appl. , vol. 156, no. 1, pp. 5667, Jan. 2013. doi: 10.1007/s1095701202036

[18] 
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional variational calculus with classical and combined Caputo derivatives, " Nonlinear Anal. , vol. 75, no. 3, pp. 15071515, Feb. 2012. http://www.sciencedirect.com/science/article/pii/S0362546X11000113

[19] 
T. Odzijewicz, A. B. Malinowska, and D. F. M. Torres, "Fractional calculus of variations in terms of a generalized fractional integral with applications to physics, " Abstr. Appl. Anal. , vol. 2012, Article ID 871912, 2012. https://www.hindawi.com/journals/aaa/2012/871912/

[20] 
R. Almeida, S. Pooseh, and D. F. M. Torres, Computational Methods in the Fractional Calculus of Variations. London: Imperial College Press, 2015.

[21] 
A. B. Malinowska, T. Odzijewicz, and D. F. M. Torres, Advanced Methods in the Fractional Calculus of Variations. New York: Springer International Publishing, 2015.

[22] 
A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations. London: Imperial College Press, 2012.

[23] 
M. J. Lazo and C. E. Krumreich, "The action principle for dissipative systems, " J. Math. Phys. , vol. 55, no. 12, pp. 122902, 2014. doi: 10.1063/1.4903991

[24] 
J. D. Logan, Invariant Variational Principles. Vol.138. Mathematics in Science and Engineering. New York, San Francisco, Lindon: Academic Press, 1977.

[25] 
D. F. M. Torres, "Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations, " Commun. Pure Appl. Anal. , vol. 3, no. 3, pp. 491500, Sep. 2004. https://www.researchgate.net/publication/280005301_Proper_extensions_of_Noether%27s_symmetry_theorem_for_nonsmooth_extremals_of_the_calculus_of_variations

[26] 
G. S. F. Frederico and D. F. M. Torres, "Nonconservative Noether's theorem for fractional actionlike variational problems with intrinsic and observer times, " Int. J. Ecol. Econ. Stat. , vol. 9, no. F07, pp. 7482, Nov. 2007. http://www.academia.edu/2372009/Nonconservative_Noethers_theorem_for_fractional_actionlike_variational_problems_with_intrinsic_and_observer_times

[27] 
G. S. F. Frederico and D. F. M. Torres, "A formulation of Noether's theorem for fractional problems of the calculus of variations, " J. Math. Anal. Appl. , vol. 334, no. 2, pp. 834846, Oct. 2007. http://www.sciencedirect.com/science/article/pii/S0022247X07000340

[28] 
G. S. F. Frederico and D. F. M. Torres, "Fractional conservation laws in optimal control theory, " Nonlinear Dyn. , vol. 53, no. 3, pp. 215222, Aug. 2008. doi: 10.1007/s110710079309z

[29] 
G. S. F. Frederico and D. F. M. Torres, "Fractional optimal control in the sense of Caputo and the fractional Noether's theorem, " Int. Math. Forum, vol. 3, no. 10, pp. 479493, Sep. 2008. http://www.wenkuxiazai.com/doc/e6c1f7fec8d376eeaeaa31f22.html

[30] 
G. S. F. Frederico and D. F. M. Torres, "Fractional Noether's theorem in the RieszCaputo sense, " Appl. Math. Comput. , vol. 217, no. 3, pp. 10231033, Oct. 2010. http://www.sciencedirect.com/science/article/pii/S0096300310001244

[31] 
N. Benkhettou, A. M. C. Brito Da Cruz, and D. F. M. Torres, "A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration, " Signal Proc. , vol. 107, pp. 230237, Feb. 2015. http://www.sciencedirect.com/science/article/pii/S0165168414002448

[32] 
N. Benkhettou, A. M. C. Brito da Cruz, and D. F. M. Torres, "Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets, " Math. Methods Appl. Sci. , vol. 39, no. 2, pp. 261279, Jan. 2016. http://www.oalib.com/paper/3941045

[33] 
W. Sarlet and F. Cantrijn, "Generalizations of Noether's theorem in classical mechanics, " SIAM Rev. , vol. 23, no. 4, pp. 467494, 1981. doi: 10.1137/1023098

[34] 
G. S. F. Frederico and D. F. M. Torres, "Nonconservative Noether's theorem in optimal control, " Int. J. Tomogr. Stat. , vol. 5, no. W07, pp. 109114, 2007. http://www.academia.edu/2372000/Nonconservative_Noethers_theorem_in_optimal_control

[35] 
D. F. M. Torres, "On the Noether theorem for optimal control, " Eur. J. Control, vol. 8, no. 1, pp. 5663, 2002.

[36] 
D. F. M. Torres, "Conservation laws in optimal control, " in Dynamics, Bifurcations, and Control, vol. 273, F. Colonius and L Grüne, Eds. Berlin: Springer, 2002, pp. 287296.

[37] 
D. F. M. Torres, "Quasiinvariant optimal control problems, " Port. Math. , vol. 61, no. 1, pp. 97114, 2004. https://archive.org/details/arxivmath0302264

[38] 
S. Pooseh, R. Almeida, and D. F. M. Torres, "Fractional order optimal control problems with free terminal time, " J. Ind. Manag. Optim. , vol. 10, no. 2, pp. 363381, Apr. 2014. doi: 10.1186/s1366201609762

[39] 
D. S. Dukić, "Noether's theorem for optimum control systems, " Int. J. Control, vol. 18, no. 3, pp. 667672, Jul. 1973. doi: 10.1080/00207177308932544

[40] 
A. S. Balankin, J. BoryReyes, and M. Shapiro, "Towards a physics on fractals: differential vector calculus in threedimensional continuum with fractal metric, " Phys. A, vol. 444, pp. 345359, Feb. 2016. http://www.sciencedirect.com/science/article/pii/S037843711500881X
