IEEE/CAA Journal of Automatica Sinica
Citation:  Min Xiao, Guoping Jiang, Jinde Cao and Weixing Zheng, "Local Bifurcation Analysis of a Delayed Fractionalorder Dynamic Model of Dual Congestion Control Algorithms," IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 361369, Apr. 2017. doi: 10.1109/JAS.2016.7510151 
[1] 
B. I. Henry and S. L. Wearne, "Existence of Turing instabilities in a twospecies fractional reactiondiffusion system, " SIAM J. Appl. Math. , vol. 62, no. 3, pp. 870887, Feb. 2002. doi: 10.1137/S0036139900375227

[2] 
N. Engheia, "On the role of fractional calculus in electromagnetic theory, " IEEE Antennas Propag. Mag. , vol. 39, no. 4, pp. 3546, Aug. 1997. http://ieeexplore.ieee.org/document/632994/

[3] 
N. Heymans and J. C. Bauwens, "Fractal rheological models and fractional differential equations for viscoelastic behavior, " Rheol. Acta, vol. 33, no. 3, pp. 210219, May1994. doi: 10.1007/BF00437306

[4] 
H. Sun, A. Abdelwahab, and B. Onaral, "Linear approximation of transfer function with a pole of fractional power, " IEEE Trans. Automat. Control, vol. 29, no. 5, pp. 441444, May1984. https://www.mathworks.com/help/slcontrol/ug/linearize.html

[5] 
D. Baleanu, J. A. T. Machado, and A. C. J. Luo, " Fractional Dynamics and Control. Berlin: Springer, 2012.

[6] 
V. D. Djordjević, J. Jarić, B. Fabry, J. J. Fredberg, and D. Stamenović, "Fractional derivatives embody essential features of cell rheological behavior, " Ann. Biomed. Eng. , vol. 31, no. 6, pp. 692699, Jun. 2003. doi: 10.1114/1.1574026

[7] 
Y. H. Lim, K. K. Oh, and H. S. Ahn, "Stability and stabilization of fractionalorder linear systems subject to input saturation, " IEEE Trans. Automat. Control, vol. 58, no. 4, pp. 10621067, Apr. 2013. http://ieeexplore.ieee.org/document/6246678/

[8] 
M. Xiao, W. X. Zheng, G. P. Jiang, and J. D. Cao, "Undamped oscillations generated by Hopf bifurcations in fractionalorder recurrent neural networks with Caputo derivative, " IEEE Trans. Neural Networks Learn. Syst. , vol. 26, no. 12, pp. 32013214, Dec. 2015. https://www.semanticscholar.org/paper/UndampedOscillationsGeneratedbyHopfXiaoZheng/3efc5b73a1229987be63a910c61682ba16cf7917

[9] 
T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, "Chaos in a fractional order Chua's system, " IEEE Trans. Circuits Syst. Ⅰ Fund. Theory Appl. , vol. 42, no. 8, pp. 485490, Aug. 1995. http://ieeexplore.ieee.org/document/404062/

[10] 
I. N'Doye, H. Voos, and M. Darouach, "Observerbased approach for fractionalorder chaotic synchronization and secure communication, " IEEE J. Emerg. Sel. Topics Circuits Syst. , vol. 3, no. 3, pp. 442450, Sep. 2013. http://ieeexplore.ieee.org/document/6669423/

[11] 
A. Papachristodoulou and A. Jadbabaie, "Delay robustness of nonlinear Internet congestion control schemes, " IEEE Trans. Automat. Control, vol. 55, no. 6, pp. 14211427, Jun. 2010. http://ieeexplore.ieee.org/document/5422746/

[12] 
J. Barrera and A. Garcia, "Dynamic incentives for congestion control, " IEEE Trans. Automat. Control, vol. 60, no. 2, pp. 299310, Feb. 2015. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6879269

[13] 
X. Zhang and A. Papachristodoulou, "Improving the performance of network congestion control algorithms, " IEEE Trans. Automat. Control, vol. 60, no. 2, pp. 522527, Feb. 2015. http://ieeexplore.ieee.org/iel7/9/4601496/06849427.pdf?arnumber=6849427

[14] 
F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, "Rate control for communication networks: shadow prices, proportional fairness and stability, " J. Oper. Res. Soc. , vol. 49, no. 3, pp. 237252, Mar. 1998.

[15] 
Y. P. Zhang and D. Loguinov, "Local and global stability of delayed congestion control systems, " IEEE Trans. Automat. Control, vol. 53, no. 10, pp. 23562360, Nov. 2008. http://ieeexplore.ieee.org/document/4668502/

[16] 
P. Ranjan, R. J. La, and E. H. Abed, "Global stability conditions for rate control with arbitrary communication delays, " IEEE/ACM Trans. Network. , vol. 14, no. 1, pp. 94107, Feb. 2006. http://www.academia.edu/412465/Global_Stability_Conditions_for_Rate_Control_With_Arbitrary_Communication_Delays

[17] 
M. L. Sichitiu and P. H. Bauer, "Asymptotic stability of congestion control systems with multiple sources, " IEEE Trans. Automat. Control, vol. 51, no. 2, pp. 292298, Feb. 2006. http://ieeexplore.ieee.org/document/1593903/

[18] 
Y. P. Tian, "Stability analysis and design of the secondorder congestion control for networks with heterogeneous delays, " IEEE/ACM Trans. Network. , vol. 13, no. 5, pp. 10821093, Oct. 2005. http://ieeexplore.ieee.org/iel5/90/32642/01528496.pdf?arnumber=1528496

[19] 
G. Raina, "Local bifurcation analysis of some dual congestion control algorithms, " IEEE Trans. Automat. Control, vol. 50, no. 8, pp. 11351146, Aug. 2005. http://www.amm.shu.edu.cn/CN/abstract/abstract10711.shtml

[20] 
C. G. Li, G. R. Chen, X. F. Liao, and J. B. Yu, "Hopf bifurcation in an Internet congestion control model, " Chaos Solitons Fractals, vol. 19, no. 4, pp. 853862, Mar. 2004. http://www.sciencedirect.com/science/article/pii/S0960077903002698

[21] 
M. Xiao, W. X. Zheng, and J. D. Cao, "Bifurcation control of a congestion control model via state feedback, " Int. J. Bifurc. Chaos, vol. 23, no. 6, pp. 1330018, Jun. 2013. doi: 10.1142/S0218127413300188

[22] 
W. Y. Xu, J. D. Cao, and M. Xiao, "Bifurcation analysis of a class of (n+1)dimension Internet congestion control systems, " Int. J. Bifurc. Chaos, vol. 25, no. 2, pp. 1550019, Feb. 2015. http://or.nsfc.gov.cn/handle/000019035/334670

[23] 
D. W. Ding, J. Zhu, X. S. Luo, and Y. L. Liu, "Delay induced Hopf bifurcation in a dual model of Internet congestion control algorithm, " Nonlinear Anal. Real World Appl. , vol. 10, no. 5, pp. 28732883, Oct. 2009. http://www.sciencedirect.com/science/article/pii/S1468121808001983

[24] 
M. Xiao, G. P. Jiang, and L. D. Zhao, "State feedback control at Hopf bifurcation in an exponential RED algorithm model, " Nonlinear Dyn. , vol. 76, no. 2, pp. 14691484, Apr. 2014. https://www.researchgate.net/publication/271740392_State_feedback_control_at_Hopf_bifurcation_in_an_exponential_RED_algorithm_model

[25] 
F. Liu F, H. O. Wang, and Z. H. Guan, "Hopf bifurcation control in the XCP for the Internet congestion control system, " Nonlinear Anal. Real World Appl. , vol. 13, no. 3, pp. 14661479, Jun. 2012. http://www.sciencedirect.com/science/article/pii/S146812181100318X

[26] 
M. Xiao and J. D. Cao, "Delayed feedbackbased bifurcation control in an Internet congestion model, " J. Math. Anal. Appl. , vol. 332, no. 2, pp. 10101027, Aug. 2007. http://www.sciencedirect.com/science/article/pii/S0022247X06012157

[27] 
I. Podlubny, Fractional Differential Equations. New York: Academic Press, 1999.

[28] 
G. Q. Chen and E. G. Friedman, "An RLC interconnect model based on fourier analysis, " IEEE Trans. Comp. Aided Des. Integr. Circuits Syst. , vol. 24, no. 2, pp. 170183, Feb. 2005. http://dl.acm.org/citation.cfm?id=2298529.2301127

[29] 
V. G. Jenson and G. V. Jeffreys, Mathematical Methods in Chemical Engineering. 2nd ed. New York: Academic Press, 1977.

[30] 
R. L. Magin, "Fractional calculus models of complex dynamics in biological tissues, " Comput. Math. Appl. , vol. 59, no. 5, pp. 15861593, Mar. 2010. http://www.sciencedirect.com/science/article/pii/S0898122109005343

[31] 
N. Laskin, "Fractional market dynamics, " Phys. A, vol. 287, no. 34, pp. 482492, Dec. 2000. http://www.sciencedirect.com/science/article/pii/S0378437100003873

[32] 
W. H. Deng, C. P. Li, and J. H. Lü, "Stability analysis of linear fractional differential system with multiple time delays, " Nonlinear Dyn. , vol. 48, no. 4, pp. 409416, Jun. 2007. doi: 10.1007%2Fs1107100690940

[33] 
D. Matignon, "Stability results for fractional differential equations with applications to control processing, " in Multiconference: Computational Engineering in Systems and Application, Lille, France, 1996, pp. 963968. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.4859

[34] 
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory. New York: SpringerVerlag, 2004.

[35] 
H. A. ElSaka, E. Ahmed, M. I. Shehata, and A. M. A. ElSayed, "On stability, persistence, and Hopf bifurcation in fractional order dynamical systems, " Nonlinear Dyn. , vol. 56, no. 12, pp. 121126, Jul. 2008. doi: 10.1007/s110710089383x

[36] 
M. S. Abdelouahab, N. E. Hamri, and J. W. Wang, "Hopf bifurcation and chaos in fractionalorder modified hybrid optical system, " Nonlinear Dyn. , vol. 69, no. 12, pp. 275284, Jul. 2012. doi: 10.1007%2Fs1107101102634

[37] 
S. S. Kunniyur and R. Srikant, "Stable, scalable, fair congestion control and AQM schemes that achieve high utilization in the Internet, " IEEE Trans. Automat. Control, vol. 48, no. 11, pp. 20242028, Nov. 2003. http://ieeexplore.ieee.org/document/1245195/

[38] 
S. Liu, T. Basar, and R. Srikant, "ExponentialRED: a stabilizing AQM scheme for lowand highspeed TCP protocols, " IEEE/ACM Trans. Network. , vol. 13, no. 5, pp. 10681081, Oct. 2005. http://ieeexplore.ieee.org/document/1528495/

[39] 
P. Ranjan, E. H. Abed, and R. J. La, "Nonlinear instabilities in TCPRED, " IEEE/ACM Trans. Network. , vol. 12, no. 6, pp. 10791092, Dec. 2004. http://dl.acm.org/citation.cfm?id=1046023

[40] 
F. Kelly, "Fairness and stability of endtoend congestion control, " Eur. J. Control, vol. 9, no. 23, pp. 159176, 2003. http://www.statslab.cam.ac.uk/~frank/PAPERS/fse2ecc.html

[41] 
D. W. Ding, X. M. Qin, N. Wang, T. T. Wu, and D. Liang, "Hybrid control of Hopf bifurcation in a dual model of Internet congestion control system, " Nonlinear Dyn. , vol. 76, no. 2, pp. 10411050, Apr. 2014. doi: 10.1007/s110710131187y

[42] 
S. Bhalekar and V. DaftardarGejji, "A predictorcorrector scheme for solving nonlinear delay differential equations of fractional order, " J. Fract. Calculus Appl. , vol. 1, no. 5, pp. 19, Jul. 2011. https://www.researchgate.net/publication/282942655_A_PredictorCorrector_Scheme_for_Solving_a_Nonlinear_Circuit
