IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Xie, M. C. Zhou, G. Liu, L. Wei, H. Zhu, and P. Meo, “A transactional-behavior-based hierarchical gated network for credit card fraud detection,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1489–1503, Jul. 2025. doi: 10.1109/JAS.2025.125243 |
[1] |
X. J. Chen, W. Y. Sun, B. Wang, Z. H. Li, X. Z. Wang, and Y. M. Ye, “Spectral clustering of customer transaction data with a two-level subspace weighting method,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3230–3241, Sept. 2019. doi: 10.1109/TCYB.2018.2836804
|
[2] |
A. C. Bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten, “Feature engineering strategies for credit card fraud detection,” Exp. Syst. Appl., vol. 51, pp. 134–142, Jun. 2016. doi: 10.1016/j.eswa.2015.12.030
|
[3] |
A. Ravi, M. Msahli, H. Qiu, G. Memmi, A. Bifet, and M. K. Qiu, “Wangiri fraud: Pattern analysis and machine-learning-based detection,” IEEE Internet Things J., vol. 10, no. 8, pp. 6794–6802, Apr. 2023. doi: 10.1109/JIOT.2022.3174143
|
[4] |
J. J. Wu, Q. Yuan, D. Lin, W. You, W. L. Chen, C. Chen, and Z. B. Zheng, “Who are the phishers? Phishing scam detection on ethereum via network embedding,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 2, pp. 1156–1166, Feb. 2022. doi: 10.1109/TSMC.2020.3016821
|
[5] |
Y. G. Lin, X. M. Wang, F. Hao, Y. C. Jiang, Y. L. Wu, G. Y. Min, D. J. He, S. C. Zhu, and W. Zhao, “Dynamic control of fraud information spreading in mobile social networks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6, pp. 3725–3738, Jun. 2021. doi: 10.1109/TSMC.2019.2930908
|
[6] |
Y. Xie, G. J. Liu, C. G. Yan, C. J. Jiang, and M. C. Zhou, “Time-aware attention-based gated network for credit card fraud detection by extracting transactional behaviors,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 3, pp. 1004–1016, Jun. 2023. doi: 10.1109/TCSS.2022.3158318
|
[7] |
L. van der Maaten and G. Hinton, “Visualizing data using T-SNE,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, Nov. 2008.
|
[8] |
D. W. Cheng, X. Y. Wang, Y. Zhang, and L. Q. Zhang, “Graph neural network for fraud detection via spatial-temporal attention,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3800–3813, Aug. 2022. doi: 10.1109/TKDE.2020.3025588
|
[9] |
F. Carcillo, Y. A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, and G. Bontempi, “Combining unsupervised and supervised learning in credit card fraud detection,” Inf. Sci., vol. 557, pp. 317–331, May 2021. doi: 10.1016/j.ins.2019.05.042
|
[10] |
R. R. Li, Z. W. Liu, Y. Q. Ma, D. Yang, and S. J. Sun, “Internet financial fraud detection based on graph learning,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 3, pp. 1394–1401, Jun. 2023. doi: 10.1109/TCSS.2022.3189368
|
[11] |
C. Wang, S. Y. Chai, H. Y. Zhu, and C. J. Jiang, “CAeSaR: An online payment anti-fraud integration system with decision explainability,” IEEE Trans. Depend. Secure Comput., vol. 20, no. 3, pp. 2565–2577, May–Jun. 2023. doi: 10.1109/TDSC.2022.3186733
|
[12] |
H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck, and H. X. Nguyen, “Data-driven structural health monitoring using feature fusion and hybrid deep learning,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 2087–2103, Oct. 2021. doi: 10.1109/TASE.2020.3034401
|
[13] |
Z. H. Zhang, Z. M. Wei, and L. N. Ma, “UBRMTC: User behavior recognition model with transaction character,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 2, pp. 1589–1601, Apr. 2024. doi: 10.1109/TCSS.2023.3257227
|
[14] |
Y. M. Wu, Z. Y. Xie, S. L. Ji, Z. G. Liu, X. H. Zhang, C. T. Lin, S. G. Deng, J. Zhou, T. Wang, and R. Beyah, “Fraud-agents detection in online microfinance: A large-scale empirical study,” IEEE Trans. Depend. Secure Comput., vol. 20, no. 2, pp. 1169–1185, Mar.–Apr. 2023. doi: 10.1109/TDSC.2022.3151132
|
[15] |
L. T. Zheng, G. J. Liu, C. G. Yan, C. J. Jiang, M. C. Zhou, and M. Z. Li, “Improved TrAdaBoost and its application to transaction fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 5, pp. 1304–1316, Oct. 2020. doi: 10.1109/TCSS.2020.3017013
|
[16] |
N. Jiang, F. X. Duan, H. L. Chen, W. Huang, and X. M. Liu, “MAFI: GNN-based multiple aggregators and feature interactions network for fraud detection over heterogeneous graph,” IEEE Trans. Big Data, vol. 8, no. 4, pp. 905–919, Aug. 2022. doi: 10.1109/TBDATA.2021.3132672
|
[17] |
J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P. E. Portier, L. He-Guelton, and O. Caelen, “Sequence classification for credit-card fraud detection,” Exp. Syst. Appl., vol. 100, pp. 234–245, Jun. 2018. doi: 10.1016/j.eswa.2018.01.037
|
[18] |
T. Li, G. Kou, Y. Peng, and P. S. Yu, “An integrated cluster detection, optimization, and interpretation approach for financial data,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13848–13861, Dec. 2022. doi: 10.1109/TCYB.2021.3109066
|
[19] |
Z. Salekshahrezaee, J. L. Leevy, and T. M. Khoshgoftaar, “The effect of feature extraction and data sampling on credit card fraud detection,” J. Big Data, vol. 10, no. 1, p. 6, Dec. 2023. doi: 10.1186/s40537-023-00684-w
|
[20] |
M. Habibpour, H. Gharoun, M. Mehdipour, A. Tajally, H. Asgharnezhad, A. Shamsi, A. Khosravi, and S. Nahavandi, “Uncertainty-aware credit card fraud detection using deep learning,” Eng. Appl. Artif. Intell., vol. 123, p. 106248, Aug. 2023. doi: 10.1016/j.engappai.2023.106248
|
[21] |
H. H. Zhu, M. C. Zhou, Y. Xie, and A. Albeshri, “A self-adapting and efficient dandelion algorithm and its application to feature selection for credit card fraud detection,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 377–390, Feb. 2024. doi: 10.1109/JAS.2023.124008
|
[22] |
R. Saia and S. Carta, “Evaluating the benefits of using proactive transformed-domain-based techniques in fraud detection tasks,” Future Gener. Comput. Syst., vol. 93, pp. 18–32, Apr. 2019. doi: 10.1016/j.future.2018.10.016
|
[23] |
S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, “Deep learning and time series-to-image encoding for financial forecasting,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 683–692, May 2020. doi: 10.1109/JAS.2020.1003132
|
[24] |
P. Mrozek, J. Panneerselvam, and O. Bagdasar, “Efficient resampling for fraud detection during anonymised credit card transactions with unbalanced datasets,” in Proc. IEEE/ACM 13th Int. Conf. Utility and Cloud Computing, Leicester, UK, 2020, pp. 426−433.
|
[25] |
R. Saia, “Unbalanced data classification in fraud detection by introducing a multidimensional space analysis,” in Proc. 3rd Int. Conf. Internet of Things, Big Data and Security, Funchal, Madeira, Portugal, 2018, pp. 29−40.
|
[26] |
M. C. Lee, J. C. Lin, and E. G. Gran, “RePAD: Real-time proactive anomaly detection for time series,” in Proc. 34th Int. Conf. Advanced Information Networking and Applications, Caserta, Italy, 2020, pp. 1291−1302.
|
[27] |
J. P. Cui, C. G. Yan, and C. Wang, “Remember: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 3, pp. 643–654, Jun. 2021. doi: 10.1109/TCSS.2021.3052950
|
[28] |
H. H. Zhu, M. C. Zhou, G. J. Liu, Y. Xie, S. J. Liu, and C. Guo, “NUS: Noisy-sample-removed undersampling scheme for imbalanced classification and application to credit card fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 2, pp. 1793–1804, Apr. 2024. doi: 10.1109/TCSS.2023.3243925
|
[29] |
S. F. Han, K. Zhu, M. C. Zhou, and X. Y. Cai, “Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 12, pp. 7845–7857, Dec. 2022. doi: 10.1109/TSMC.2022.3171549
|
[30] |
X. T. Niu, L. Wang, and X. L. Yang, “A comparison study of credit card fraud detection: Supervised versus unsupervised,” arXiv preprint arXiv: 1904.10604, 2019.
|
[31] |
A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, “Credit card fraud detection: A realistic modeling and a novel learning strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3784–3797, Aug. 2018. doi: 10.1109/TNNLS.2017.2736643
|
[32] |
R. H. Cao, G. J. Liu, Y. Xie, and C. J. Jiang, “Two-level attention model of representation learning for fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 6, pp. 1291–1301, Dec. 2021. doi: 10.1109/TCSS.2021.3074175
|
[33] |
C. Whitrow, D. J. Hand, P. Juszczak, D. Weston, and N. M. Adams, “Transaction aggregation as a strategy for credit card fraud detection,” Data Min. Knowl. Discov., vol. 18, no. 1, pp. 30–55, Feb. 2009. doi: 10.1007/s10618-008-0116-z
|
[34] |
X. W. Zhang, Y. C. Han, W. Xu, and Q. L. Wang, “HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture,” Inf. Sci., vol. 557, pp. 302–316, May 2021. doi: 10.1016/j.ins.2019.05.023
|
[35] |
C. Wang and H. Y. Zhu, “Representing fine-grained co-occurrences for behavior-based fraud detection in online payment services,” IEEE Trans. Depend. Secure Comput., vol. 19, no. 1, pp. 301–315, Jan.–Feb. 2022. doi: 10.1109/TDSC.2020.2991872
|
[36] |
P. De Meo, F. Messina, D. Rosaci, and G. M. L. Sarné, “Combining trust and skills evaluation to form e-learning classes in online social networks,” Inf. Sci., vol. 405, pp. 107–122, Sept. 2017. doi: 10.1016/j.ins.2017.04.002
|
[37] |
J. Du, C. M. Vong, and C. L. P. Chen, “Novel efficient RNN and LSTM-Like architectures: Recurrent and gated broad learning systems and their applications for text classification,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1586–1597, Mar. 2021. doi: 10.1109/TCYB.2020.2969705
|
[38] |
J. Guo, G. N. Liu, Y. Zuo, and J. J. Wu, “Learning sequential behavior representations for fraud detection,” in Proc. IEEE Int. Conf. Data Mining, Singapore, Singapore, 2018, pp. 127−136.
|
[39] |
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int. Conf. Learning Representations, San Diego, CA, USA, 2015.
|
[40] |
Y. Xie, G. J. Liu, C. G. Yan, C. J. Jiang, M. C. Zhou, and M. Z. Li, “Learning transactional behavioral representations for credit card fraud detection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4, pp. 5735–5748, Apr. 2024. doi: 10.1109/TNNLS.2022.3208967
|
[41] |
Y. Xie, G. J. Liu, M. C. Zhou, L. F. Wei, H. H. Zhu, and R. G. Zhou, “A spatial-temporal gated network for credit card fraud detection,” in Proc. Int. Conf. Networking, Sensing and Control, Marseille, France, 2023, pp. 1−6.
|
[42] |
J. Abreu, L. Fred, D. Macê do, and C. Zanchettin, “Hierarchical attentional hybrid neural networks for document classification,” in Proc. 28th Int. Conf. Artificial Neural Networks, Munich, Germany, 2019, pp. 396−402.
|
[43] |
P. De Meo, F. Messina, D. Rosaci, and G. M. L. Sarné, “Forming time-stable homogeneous groups into online social networks,” Inf. Sci., vol. 414, pp. 117–132, Nov. 2017. doi: 10.1016/j.ins.2017.05.048
|
[44] |
Y. H. Yoo, U. H. Kim, and J. H. Kim, “Recurrent reconstructive network for sequential anomaly detection,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1704–1715, Mar. 2021. doi: 10.1109/TCYB.2019.2933548
|
[45] |
L. F. Li, Z. Q. Liu, C. C. Chen, Y. L. Zhang, J. Zhou, and X. L. Li, “A time attention based fraud transaction detection framework,” arXiv preprint arXiv: 1912.11760, 2020.
|
[46] |
Y. Zhu, H. Li, Y. K. Liao, B. D. Wang, Z. Y. Guan, H. F. Liu, and D. Cai, “What to do next: Modeling user behaviors by time-LSTM,” in Proc. 26th Int. Joint Conf. Artificial Intelligence, Melbourne, Australia, 2017, pp. 3602−3608.
|
[47] |
D. W. Cheng, S. Xiang, C. C. Shang, Y. Y. Zhang, F. Z. Yang, and L. Q. Zhang, “Spatio-temporal attention-based neural network for credit card fraud detection,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, NY, USA, 2020, pp. 362−369.
|
[48] |
M. M. Wang, Z. J. Ding, P. H. Zhao, W. Y. Yu, and C. J. Jiang, “A dynamic data slice approach to the vulnerability analysis of e-commerce systems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 10, pp. 3598–3612, Oct. 2020. doi: 10.1109/TSMC.2018.2862387
|
[49] |
D. D. Wu, D. L. Olson, and C. C. Luo, “A decision support approach for accounts receivable risk management,” IEEE Trans. Syst. Man Cybern. Syst., vol. 44, no. 12, pp. 1624–1632, Dec. 2014. doi: 10.1109/TSMC.2014.2318020
|
[50] |
U. Fiore, A. de Santis, F. Perla, P. Zanetti, and F. Palmieri, “Using generative adversarial networks for improving classification effectiveness in credit card fraud detection,” Inf. Sci., vol. 479, pp. 448–455, Apr. 2019. doi: 10.1016/j.ins.2017.12.030
|
[51] |
K. Murphy, N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.
|
[52] |
O. Ozyegen, I. Ilic, and M. Cevik, “Evaluation of interpretability methods for multivariate time series forecasting,” Appl. Intell., vol. 52, no. 5, pp. 4727–4743, Mar. 2022. doi: 10.1007/s10489-021-02662-2
|
[53] |
C. Lin, Z. Cao, and M. C. Zhou, “Autoencoder-embedded iterated local search for energy-minimized task schedules of human-cyber-physical systems,” IEEE Trans. Autom. Science and Engineering, vol. 22, pp. 512–522, 2025.
|
[54] |
X. Wen and M. C. Zhou, “Evolution and role of optimizers in training deep learning models,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2039–2042, Oct. 2024.
|