A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 12 Issue 7
Jul.  2025

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Xie, M. C. Zhou, G. Liu, L. Wei, H. Zhu, and P. Meo, “A transactional-behavior-based hierarchical gated network for credit card fraud detection,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1489–1503, Jul. 2025. doi: 10.1109/JAS.2025.125243
Citation: Y. Xie, M. C. Zhou, G. Liu, L. Wei, H. Zhu, and P. Meo, “A transactional-behavior-based hierarchical gated network for credit card fraud detection,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 7, pp. 1489–1503, Jul. 2025. doi: 10.1109/JAS.2025.125243

A Transactional-Behavior-Based Hierarchical Gated Network for Credit Card Fraud Detection

doi: 10.1109/JAS.2025.125243
Funds:  This work was supported in part by the National Natural Science Foundation of China (61972241), the Natural Science Foundation of Shanghai (24ZR1427500, 22ZR1427100), the Key Projects of Natural Science Research in Anhui Higher Education Institutions (2022AH051909), and Bengbu University 2021 High-Level Scientific Research and Cultivation Project (2021pyxm04)
More Information
  • The task of detecting fraud in credit card transactions is crucial to ensure the security and stability of a financial system, as well as to enforce customer confidence in digital payment systems. Historically, credit card companies have used rule-based approaches to detect fraudulent transactions, but these have proven inadequate due to the complexity of fraud strategies and have been replaced by much more powerful solutions based on machine learning or deep learning algorithms. Despite significant progress, the current approaches to fraud detection suffer from a number of limitations: for example, it is unclear whether some transaction features are more effective than others in discriminating fraudulent transactions, and they often neglect possible correlations among transactions, even though they could reveal illicit behaviour. In this paper, we propose a novel credit card fraud detection (CCFD) method based on a transaction behaviour-based hierarchical gated network. First, we introduce a feature-oriented extraction module capable of identifying key features from original transactions, and such analysis is effective in revealing the behavioural characteristics of fraudsters. Second, we design a transaction-oriented extraction module capable of capturing the correlation between users’ historical and current transactional behaviour. Such information is crucial for revealing users’ sequential behaviour patterns. Our approach, called transactional-behaviour-based hierarchical gated network model (TbHGN), extracts two types of new transactional features, which are then combined in a feature interaction module to learn the final transactional representations used for CCFD. We have conducted extensive experiments on a real-world credit card transaction dataset with an increase in average F1 between 1.42% and 6.53% and an improvement in average AUC between 0.63% and 2.78% over the state of the art.

     

  • loading
  • [1]
    X. J. Chen, W. Y. Sun, B. Wang, Z. H. Li, X. Z. Wang, and Y. M. Ye, “Spectral clustering of customer transaction data with a two-level subspace weighting method,” IEEE Trans. Cybern., vol. 49, no. 9, pp. 3230–3241, Sept. 2019. doi: 10.1109/TCYB.2018.2836804
    [2]
    A. C. Bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten, “Feature engineering strategies for credit card fraud detection,” Exp. Syst. Appl., vol. 51, pp. 134–142, Jun. 2016. doi: 10.1016/j.eswa.2015.12.030
    [3]
    A. Ravi, M. Msahli, H. Qiu, G. Memmi, A. Bifet, and M. K. Qiu, “Wangiri fraud: Pattern analysis and machine-learning-based detection,” IEEE Internet Things J., vol. 10, no. 8, pp. 6794–6802, Apr. 2023. doi: 10.1109/JIOT.2022.3174143
    [4]
    J. J. Wu, Q. Yuan, D. Lin, W. You, W. L. Chen, C. Chen, and Z. B. Zheng, “Who are the phishers? Phishing scam detection on ethereum via network embedding,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 2, pp. 1156–1166, Feb. 2022. doi: 10.1109/TSMC.2020.3016821
    [5]
    Y. G. Lin, X. M. Wang, F. Hao, Y. C. Jiang, Y. L. Wu, G. Y. Min, D. J. He, S. C. Zhu, and W. Zhao, “Dynamic control of fraud information spreading in mobile social networks,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6, pp. 3725–3738, Jun. 2021. doi: 10.1109/TSMC.2019.2930908
    [6]
    Y. Xie, G. J. Liu, C. G. Yan, C. J. Jiang, and M. C. Zhou, “Time-aware attention-based gated network for credit card fraud detection by extracting transactional behaviors,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 3, pp. 1004–1016, Jun. 2023. doi: 10.1109/TCSS.2022.3158318
    [7]
    L. van der Maaten and G. Hinton, “Visualizing data using T-SNE,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, Nov. 2008.
    [8]
    D. W. Cheng, X. Y. Wang, Y. Zhang, and L. Q. Zhang, “Graph neural network for fraud detection via spatial-temporal attention,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 8, pp. 3800–3813, Aug. 2022. doi: 10.1109/TKDE.2020.3025588
    [9]
    F. Carcillo, Y. A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, and G. Bontempi, “Combining unsupervised and supervised learning in credit card fraud detection,” Inf. Sci., vol. 557, pp. 317–331, May 2021. doi: 10.1016/j.ins.2019.05.042
    [10]
    R. R. Li, Z. W. Liu, Y. Q. Ma, D. Yang, and S. J. Sun, “Internet financial fraud detection based on graph learning,” IEEE Trans. Comput. Soc. Syst., vol. 10, no. 3, pp. 1394–1401, Jun. 2023. doi: 10.1109/TCSS.2022.3189368
    [11]
    C. Wang, S. Y. Chai, H. Y. Zhu, and C. J. Jiang, “CAeSaR: An online payment anti-fraud integration system with decision explainability,” IEEE Trans. Depend. Secure Comput., vol. 20, no. 3, pp. 2565–2577, May–Jun. 2023. doi: 10.1109/TDSC.2022.3186733
    [12]
    H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck, and H. X. Nguyen, “Data-driven structural health monitoring using feature fusion and hybrid deep learning,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 2087–2103, Oct. 2021. doi: 10.1109/TASE.2020.3034401
    [13]
    Z. H. Zhang, Z. M. Wei, and L. N. Ma, “UBRMTC: User behavior recognition model with transaction character,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 2, pp. 1589–1601, Apr. 2024. doi: 10.1109/TCSS.2023.3257227
    [14]
    Y. M. Wu, Z. Y. Xie, S. L. Ji, Z. G. Liu, X. H. Zhang, C. T. Lin, S. G. Deng, J. Zhou, T. Wang, and R. Beyah, “Fraud-agents detection in online microfinance: A large-scale empirical study,” IEEE Trans. Depend. Secure Comput., vol. 20, no. 2, pp. 1169–1185, Mar.–Apr. 2023. doi: 10.1109/TDSC.2022.3151132
    [15]
    L. T. Zheng, G. J. Liu, C. G. Yan, C. J. Jiang, M. C. Zhou, and M. Z. Li, “Improved TrAdaBoost and its application to transaction fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 7, no. 5, pp. 1304–1316, Oct. 2020. doi: 10.1109/TCSS.2020.3017013
    [16]
    N. Jiang, F. X. Duan, H. L. Chen, W. Huang, and X. M. Liu, “MAFI: GNN-based multiple aggregators and feature interactions network for fraud detection over heterogeneous graph,” IEEE Trans. Big Data, vol. 8, no. 4, pp. 905–919, Aug. 2022. doi: 10.1109/TBDATA.2021.3132672
    [17]
    J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P. E. Portier, L. He-Guelton, and O. Caelen, “Sequence classification for credit-card fraud detection,” Exp. Syst. Appl., vol. 100, pp. 234–245, Jun. 2018. doi: 10.1016/j.eswa.2018.01.037
    [18]
    T. Li, G. Kou, Y. Peng, and P. S. Yu, “An integrated cluster detection, optimization, and interpretation approach for financial data,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13848–13861, Dec. 2022. doi: 10.1109/TCYB.2021.3109066
    [19]
    Z. Salekshahrezaee, J. L. Leevy, and T. M. Khoshgoftaar, “The effect of feature extraction and data sampling on credit card fraud detection,” J. Big Data, vol. 10, no. 1, p. 6, Dec. 2023. doi: 10.1186/s40537-023-00684-w
    [20]
    M. Habibpour, H. Gharoun, M. Mehdipour, A. Tajally, H. Asgharnezhad, A. Shamsi, A. Khosravi, and S. Nahavandi, “Uncertainty-aware credit card fraud detection using deep learning,” Eng. Appl. Artif. Intell., vol. 123, p. 106248, Aug. 2023. doi: 10.1016/j.engappai.2023.106248
    [21]
    H. H. Zhu, M. C. Zhou, Y. Xie, and A. Albeshri, “A self-adapting and efficient dandelion algorithm and its application to feature selection for credit card fraud detection,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 377–390, Feb. 2024. doi: 10.1109/JAS.2023.124008
    [22]
    R. Saia and S. Carta, “Evaluating the benefits of using proactive transformed-domain-based techniques in fraud detection tasks,” Future Gener. Comput. Syst., vol. 93, pp. 18–32, Apr. 2019. doi: 10.1016/j.future.2018.10.016
    [23]
    S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, “Deep learning and time series-to-image encoding for financial forecasting,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 683–692, May 2020. doi: 10.1109/JAS.2020.1003132
    [24]
    P. Mrozek, J. Panneerselvam, and O. Bagdasar, “Efficient resampling for fraud detection during anonymised credit card transactions with unbalanced datasets,” in Proc. IEEE/ACM 13th Int. Conf. Utility and Cloud Computing, Leicester, UK, 2020, pp. 426−433.
    [25]
    R. Saia, “Unbalanced data classification in fraud detection by introducing a multidimensional space analysis,” in Proc. 3rd Int. Conf. Internet of Things, Big Data and Security, Funchal, Madeira, Portugal, 2018, pp. 29−40.
    [26]
    M. C. Lee, J. C. Lin, and E. G. Gran, “RePAD: Real-time proactive anomaly detection for time series,” in Proc. 34th Int. Conf. Advanced Information Networking and Applications, Caserta, Italy, 2020, pp. 1291−1302.
    [27]
    J. P. Cui, C. G. Yan, and C. Wang, “Remember: Ranking metric embedding-based multicontextual behavior profiling for online banking fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 3, pp. 643–654, Jun. 2021. doi: 10.1109/TCSS.2021.3052950
    [28]
    H. H. Zhu, M. C. Zhou, G. J. Liu, Y. Xie, S. J. Liu, and C. Guo, “NUS: Noisy-sample-removed undersampling scheme for imbalanced classification and application to credit card fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 2, pp. 1793–1804, Apr. 2024. doi: 10.1109/TCSS.2023.3243925
    [29]
    S. F. Han, K. Zhu, M. C. Zhou, and X. Y. Cai, “Competition-driven multimodal multiobjective optimization and its application to feature selection for credit card fraud detection,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 12, pp. 7845–7857, Dec. 2022. doi: 10.1109/TSMC.2022.3171549
    [30]
    X. T. Niu, L. Wang, and X. L. Yang, “A comparison study of credit card fraud detection: Supervised versus unsupervised,” arXiv preprint arXiv: 1904.10604, 2019.
    [31]
    A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi, “Credit card fraud detection: A realistic modeling and a novel learning strategy,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3784–3797, Aug. 2018. doi: 10.1109/TNNLS.2017.2736643
    [32]
    R. H. Cao, G. J. Liu, Y. Xie, and C. J. Jiang, “Two-level attention model of representation learning for fraud detection,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 6, pp. 1291–1301, Dec. 2021. doi: 10.1109/TCSS.2021.3074175
    [33]
    C. Whitrow, D. J. Hand, P. Juszczak, D. Weston, and N. M. Adams, “Transaction aggregation as a strategy for credit card fraud detection,” Data Min. Knowl. Discov., vol. 18, no. 1, pp. 30–55, Feb. 2009. doi: 10.1007/s10618-008-0116-z
    [34]
    X. W. Zhang, Y. C. Han, W. Xu, and Q. L. Wang, “HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture,” Inf. Sci., vol. 557, pp. 302–316, May 2021. doi: 10.1016/j.ins.2019.05.023
    [35]
    C. Wang and H. Y. Zhu, “Representing fine-grained co-occurrences for behavior-based fraud detection in online payment services,” IEEE Trans. Depend. Secure Comput., vol. 19, no. 1, pp. 301–315, Jan.–Feb. 2022. doi: 10.1109/TDSC.2020.2991872
    [36]
    P. De Meo, F. Messina, D. Rosaci, and G. M. L. Sarné, “Combining trust and skills evaluation to form e-learning classes in online social networks,” Inf. Sci., vol. 405, pp. 107–122, Sept. 2017. doi: 10.1016/j.ins.2017.04.002
    [37]
    J. Du, C. M. Vong, and C. L. P. Chen, “Novel efficient RNN and LSTM-Like architectures: Recurrent and gated broad learning systems and their applications for text classification,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1586–1597, Mar. 2021. doi: 10.1109/TCYB.2020.2969705
    [38]
    J. Guo, G. N. Liu, Y. Zuo, and J. J. Wu, “Learning sequential behavior representations for fraud detection,” in Proc. IEEE Int. Conf. Data Mining, Singapore, Singapore, 2018, pp. 127−136.
    [39]
    D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int. Conf. Learning Representations, San Diego, CA, USA, 2015.
    [40]
    Y. Xie, G. J. Liu, C. G. Yan, C. J. Jiang, M. C. Zhou, and M. Z. Li, “Learning transactional behavioral representations for credit card fraud detection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4, pp. 5735–5748, Apr. 2024. doi: 10.1109/TNNLS.2022.3208967
    [41]
    Y. Xie, G. J. Liu, M. C. Zhou, L. F. Wei, H. H. Zhu, and R. G. Zhou, “A spatial-temporal gated network for credit card fraud detection,” in Proc. Int. Conf. Networking, Sensing and Control, Marseille, France, 2023, pp. 1−6.
    [42]
    J. Abreu, L. Fred, D. Macê do, and C. Zanchettin, “Hierarchical attentional hybrid neural networks for document classification,” in Proc. 28th Int. Conf. Artificial Neural Networks, Munich, Germany, 2019, pp. 396−402.
    [43]
    P. De Meo, F. Messina, D. Rosaci, and G. M. L. Sarné, “Forming time-stable homogeneous groups into online social networks,” Inf. Sci., vol. 414, pp. 117–132, Nov. 2017. doi: 10.1016/j.ins.2017.05.048
    [44]
    Y. H. Yoo, U. H. Kim, and J. H. Kim, “Recurrent reconstructive network for sequential anomaly detection,” IEEE Trans. Cybern., vol. 51, no. 3, pp. 1704–1715, Mar. 2021. doi: 10.1109/TCYB.2019.2933548
    [45]
    L. F. Li, Z. Q. Liu, C. C. Chen, Y. L. Zhang, J. Zhou, and X. L. Li, “A time attention based fraud transaction detection framework,” arXiv preprint arXiv: 1912.11760, 2020.
    [46]
    Y. Zhu, H. Li, Y. K. Liao, B. D. Wang, Z. Y. Guan, H. F. Liu, and D. Cai, “What to do next: Modeling user behaviors by time-LSTM,” in Proc. 26th Int. Joint Conf. Artificial Intelligence, Melbourne, Australia, 2017, pp. 3602−3608.
    [47]
    D. W. Cheng, S. Xiang, C. C. Shang, Y. Y. Zhang, F. Z. Yang, and L. Q. Zhang, “Spatio-temporal attention-based neural network for credit card fraud detection,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, NY, USA, 2020, pp. 362−369.
    [48]
    M. M. Wang, Z. J. Ding, P. H. Zhao, W. Y. Yu, and C. J. Jiang, “A dynamic data slice approach to the vulnerability analysis of e-commerce systems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 10, pp. 3598–3612, Oct. 2020. doi: 10.1109/TSMC.2018.2862387
    [49]
    D. D. Wu, D. L. Olson, and C. C. Luo, “A decision support approach for accounts receivable risk management,” IEEE Trans. Syst. Man Cybern. Syst., vol. 44, no. 12, pp. 1624–1632, Dec. 2014. doi: 10.1109/TSMC.2014.2318020
    [50]
    U. Fiore, A. de Santis, F. Perla, P. Zanetti, and F. Palmieri, “Using generative adversarial networks for improving classification effectiveness in credit card fraud detection,” Inf. Sci., vol. 479, pp. 448–455, Apr. 2019. doi: 10.1016/j.ins.2017.12.030
    [51]
    K. Murphy, N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.
    [52]
    O. Ozyegen, I. Ilic, and M. Cevik, “Evaluation of interpretability methods for multivariate time series forecasting,” Appl. Intell., vol. 52, no. 5, pp. 4727–4743, Mar. 2022. doi: 10.1007/s10489-021-02662-2
    [53]
    C. Lin, Z. Cao, and M. C. Zhou, “Autoencoder-embedded iterated local search for energy-minimized task schedules of human-cyber-physical systems,” IEEE Trans. Autom. Science and Engineering, vol. 22, pp. 512–522, 2025.
    [54]
    X. Wen and M. C. Zhou, “Evolution and role of optimizers in training deep learning models,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 10, pp. 2039–2042, Oct. 2024.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(7)

    Article Metrics

    Article views (196) PDF downloads(30) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return