IEEE/CAA Journal of Automatica Sinica
Citation: | K. Mao, P. Wei, Y. Wang, M. Liu, S. Wang, and N. Zheng, “CSDD: A benchmark dataset for casting surface defect detection and segmentation,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 5, pp. 947–960, May 2025. doi: 10.1109/JAS.2025.125228 |
[1] |
J. Masci, U. Meier, G. Fricout, and J. Schmidhuber, “Multi-scale pyramidal pooling network for generic steel defect classification,” in Proc. Int. Joint Conf. Neural Networks, Dallas, USA, 2013, pp. 1–8.
|
[2] |
R. Ren, T. Hung, and K. C. Tan, “A generic deep-learning-based approach for automated surface inspection,” IEEE Trans. Cybern., vol. 48, no. 3, pp. 929–940, Mar. 2018.
|
[3] |
V. Natarajan, T.-Y. Hung, S. Vaikundam, and L.-T. Chia, “Convolutional networks for voting-based anomaly classification in metal surface inspection,” in Proc. IEEE Int. Conf. Industrial Technology, Toronto, Canada, 2017, pp. 986–991.
|
[4] |
X. Tao, D. Zhang, W. Ma, X. Liu, and D. Xu, “Automatic metallic surface defect detection and recognition with convolutional neural networks,” Appl. Sci., vol. 8, no. 9, p. 1575, Sep. 2018. doi: 10.3390/app8091575
|
[5] |
T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A fast and robust convolutional neural network-based defect detection model in product quality control,” Int. J. Adv. Manuf. Technol., vol. 94, no. 9-12, pp. 3465–3471, Feb. 2018. doi: 10.1007/s00170-017-0882-0
|
[6] |
Y.-J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüküztürk, “Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types,” Comput.-Aided Civil Infrastruct. Eng., vol. 33, no. 9, pp. 731–747, Sep. 2018.
|
[7] |
L. Cui, X. Jiang, M. Xu, W. Li, P. Lv, and B. Zhou, “SDDNet: A fast and accurate network for surface defect detection,” IEEE Trans. Instrum. Meas., vol. 70, p. 2505713, 2021.
|
[8] |
X. Jiang, F. Yan, Y. Lu, K. Wang, S. Guo, T. Zhang, Y. Pang, J. Niu, and M. Xu, “Joint attention-guided feature fusion network for saliency detection of surface defects,” IEEE Trans. Instrum. Meas., vol. 71, p. 2520912, 2022.
|
[9] |
H. Wang, R. Zhang, M. Feng, Y. Liu, and G. Yang, “Global context-based self-similarity feature augmentation and bidirectional feature fusion for surface defect detection,” IEEE Trans. Instrum. Meas., vol. 72, p. 5024712, 2023.
|
[10] |
H. Zhou, R. Yang, R. Hu, C. Shu, X. Tang, and X. Li, “ETDNet: Efficient transformer-based detection network for surface defect detection,” IEEE Trans. Instrum. Meas., vol. 72, p. 2525014, 2023.
|
[11] |
Y. Li, X. Wang, Z. He, Z. Wang, K. Cheng, S. Ding, Y. Fan, X. Li, Y. Niu, S. Xiao, Z. Hao, B. Gao, and H. Wu, “Industry-oriented detection method of PCBA defects using semantic segmentation models,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 6, pp. 1438–1446, Jun. 2024. doi: 10.1109/JAS.2024.124422
|
[12] |
Y. Han, L. Wang, Y. Wang, and Z. Geng, “Intelligent small sample defect detection of concrete surface using novel deep learning integrating improved YOLOv5,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 545–547, Feb. 2024.
|
[13] |
K. Song and Y. Yan, “A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects,” Appl. Surf. Sci., vol. 285, pp. 858–864, Nov. 2013. doi: 10.1016/j.apsusc.2013.09.002
|
[14] |
D. Tabernik, S. Šela, J. Skvarč, and D. Skočcaj, “Segmentation-based deep-learning approach for surface-defect detection,” J. Intell. Manuf., vol. 31, no. 3, pp. 759–776, Mar. 2020.
|
[15] |
J. Božič, D. Tabernik, and D. Skočaj, “Mixed supervision for surface-defect detection: From weakly to fully supervised learning,” Comput. Ind., vol. 129, no. 3, p. 103459, Aug. 2021.
|
[16] |
T. Schlagenhauf and M. Landwehr, “Industrial machine tool component surface defect dataset,” Data Brief, vol. 39, p. 107643, Dec. 2021.
|
[17] |
X. Lv, F. Duan, J.-J. Jiang, X. Fu, and L. Gan, “Deep metallic surface defect detection: The new benchmark and detection network,” Sensors, vol. 20, no. 6, p. 1562, Mar. 2020.
|
[18] |
G. Song, K. Song, and Y. Yan, “Saliency detection for strip steel surface defects using multiple constraints and improved texture features,” Opt. Lasers Eng., vol. 128, p. 106000, May 2020.
|
[19] |
A. Grishin, BorisV, iBardintsev, inversion, and Oleg, “Severstal: Steel defect detection,” 2019. [Online]. Available: https://kaggle.com/competitions/severstal-steel-defect-detection. Accessed on: Dec. 20, 2024.
|
[20] |
G. Jocher, “Ultralytics yolov5,” 2020. [Online]. Available: https://github.com/ultralytics/yolov5. Accessed on: Dec. 20, 2024.
|
[21] |
S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” in Proc. 29th Int. Conf. Neural Information Processing Systems, Montreal, Canada, 2015, pp. 91–99.
|
[22] |
Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality object detection,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 6154–6162.
|
[23] |
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot MultiBox detector,” in Proc. 14th European Conf. Computer Vision, Amsterdam, The Netherlands, 2016, pp. 21–37.
|
[24] |
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in Proc. IEEE Int. Conf. Computer Vision, Venice, Italy, 2017, pp. 2999–3007.
|
[25] |
X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv preprint arXiv: 1904.07850, 2019.
|
[26] |
Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-stage object detection,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea (South), 2019, pp. 9626–9635.
|
[27] |
X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable DETR: Deformable transformers for end-to-end object detection,” in Proc. 9th Int. Conf. Learning Representations, 2021, pp. 1–16.
|
[28] |
D. Meng, X. Chen, Z. Fan, G. Zeng, H. Li, Y. Yuan, L. Sun, and J. Wang, “Conditional DETR for fast training convergence,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Montreal, Canada, 2021, pp. 3651–3660.
|
[29] |
G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics. Accessed on: Dec. 20, 2024.
|
[30] |
A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding, “YOLOv10: Real-time end-to-end object detection,” in Proc. 38th Conf. Neural Information Processing, Vancouver, Canada, 2024, pp. 1–21.
|
[31] |
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 213–229.
|
[32] |
J. A. Tsanakas, D. Chrysostomou, P. N. Botsaris, and A. Gasteratos, “Fault diagnosis of photovoltaic modules through image processing and canny edge detection on field thermographic measurements,” Int. J. Sustain Energy, vol. 34, no. 6, pp. 351–372, 2015.
|
[33] |
X.-C. Yuan, L.-S. Wu, and Q. Peng, “An improved OTSU method using the weighted object variance for defect detection,” Appl. Surf. Sci., vol. 349, pp. 472–484, Sep. 2015.
|
[34] |
N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 9, no. 1, pp. 62–66, Jan. 1979. doi: 10.1109/TSMC.1979.4310076
|
[35] |
W.-C. Li and D.-M. Tsai, “Automatic saw-mark detection in multicrystalline solar wafer images,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 8, pp. 2206–2220, Aug. 2011. doi: 10.1016/j.solmat.2011.03.025
|
[36] |
Y.-G. Cen, R.-Z. Zhao, L.-H. Cen, L.-H. Cui, Z. J. Miao, and Z. Wei, “Defect inspection for TFT-LCD images based on the low-rank matrix reconstruction,” Neurocomputing, vol. 149, pp. 1206–1215, Feb. 2015. doi: 10.1016/j.neucom.2014.09.007
|
[37] |
C. Jian, J. Gao, and Y. Ao, “Automatic surface defect detection for mobile phone screen glass based on machine vision,” Appl. Soft Comput., vol. 52, pp. 348–358, Mar. 2017.
|
[38] |
N. Zeng, P. Wu, Z. Wang, H. Li, W. Liu, and X. Liu, “A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection,” IEEE Trans. Instrum. Meas., vol. 71, p. 3507014, 2022.
|
[39] |
S. Jain, G. Seth, A. Paruthi, U. Soni, and G. Kumar, “Synthetic data augmentation for surface defect detection and classification using deep learning,” J. Intell. Manuf., vol. 33, no. 4, pp. 1007–1020, Apr. 2022.
|
[40] |
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 3431–3440.
|
[41] |
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. 18th Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015, pp. 234–241.
|
[42] |
L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution for semantic image segmentation,” arXiv preprint arXiv: 1706.05587, 2017.
|
[43] |
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS,” IEEE Trans. Pattern. Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.
|
[44] |
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proc. 15th European Conf. Computer Vision, Munich, Germany, 2018, pp. 833–851.
|
[45] |
H. Wu, J. Zhang, K. Huang, K. Liang, and Y. Yu, “FastFCN: Rethinking dilated convolution in the backbone for semantic segmentation,” arXiv preprint arXiv: 1903.11816, 2019.
|
[46] |
T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang, “CGNet: A light-weight context guided network for semantic segmentation,” IEEE Trans. Image. Process., vol. 30, pp. 1169–1179, 2021.
|
[47] |
H. Pan, Y. Hong, W. Sun, and Y. Jia, “Deep dual-resolution networks for real-time and accurate semantic segmentation of traffic scenes,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 3, pp. 3448–3460, Mar. 2023.
|
[48] |
J. Xu, Z. Xiong, and S. P. Bhattacharyya, “PIDNet: A real-time semantic segmentation network inspired by PID controllers,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp. 19529–19539.
|
[49] |
R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Transformer for semantic segmentation,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Montreal, Canada, 2021, pp. 7242–7252.
|
[50] |
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “SegFormer: Simple and efficient design for semantic segmentation with transformers,” in Proc. 35th Int. Conf. Neural Information Processing Systems, 2021, p. 924.
|
[51] |
B. Cheng, A. G. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for semantic segmentation,” in Proc. 35th Int. Conf. Neural Information Processing Systems, 2021, pp. 17864–17875.
|
[52] |
B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention mask transformer for universal image segmentation,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, USA, 2022, pp. 1280–1289.
|
[53] |
Y. Liu, Z. Shao, and N. Hoffmann, “Global attention mechanism: Retain information to enhance channel-spatial interactions,” arXiv preprint arXiv: 2112.05561, 2021.
|
[54] |
J. Chen, S.-H. Kao, H. He, W. Zhuo, S. Wen, C.-H. Lee, and S.-H. G. Chan, “Run, don’t walk: Chasing higher flops for faster neural networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp. 12021–12031.
|
[55] |
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proc. 15th European Conf. Computer Vision, Munich, Germany, 2018, pp. 3–19.
|
[56] |
K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,” arXiv preprint arXiv: 1906.07155, 2019.
|
[57] |
M. Contributors, “MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark,” 2020. [Online]. Available: https://github.com/open-mmlab/mmsegmentation. Accessed on: Dec. 20, 2024.
|