 Volume 12
							Issue 3
								
						 Volume 12
							Issue 3 
						IEEE/CAA Journal of Automatica Sinica
| Citation: | J. Sun, D. Li, H. Zhang, L. Liu, and W. Zhao, “Consensus control strategy for the treatment of tumour with neuroadaptive cellular immunotherapy,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 575–584, Mar. 2025. doi: 10.1109/JAS.2024.124941 | 
 
	                | [1] | S. Sharma and G. Samanta, “Analysis of the dynamics of a tumor-immune system with chemotherapy and immunotherapy and quadratic optimal control,” Differential Equations and Dynamical Systems, vol. 24, pp. 149–171, 2016. doi:  10.1007/s12591-015-0250-1 | 
| [2] | C. Wu, T. Rakhshandehroo, H. I. Wettersten, et al., “Pancreatic cancer cells upregulate LPAR4 in response to isolation stress to promote an ecm-enriched niche and support tumour initiation,” Nature Cell Biology, vol. 25, no. 2, pp. 309–322, 2023. | 
| [3] | X. Li, Y. Zhong, X. Zhang, A. K. Sood, and J. Liu, “Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells,” Oncogene, vol. 42, no. 9, pp. 665–678, 2023. | 
| [4] | G. Schett, A. Mackensen, and D. Mougiakakos, “CAR T-cell therapy in autoimmune diseases,” The Lancet, vol. 402, no. 10416, pp. 2034–2044, 2023. | 
| [5] | S. M. Albelda, “CAR T cell therapy for patients with solid tumours: Key lessons to learn and unlearn,” Nature Reviews Clinical Oncology, vol. 21, no. 1, pp. 47–66, 2024. doi:  10.1038/s41571-023-00832-4 | 
| [6] | Z. Wang, Z. Wu, Y. Liu, and W. Han, “New development in CAR-T cell therapy,” J. Hematology & Oncology, vol. 10, no. 1, pp. 1–11, 2017. | 
| [7] | L. Wang, L. Zhang, L. C. Dunmall, Y. Y. Wang, Z. Fan, Z. Cheng, and Y. Wang, “The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors,” Cancer Letters, vol. 591, p. 216871, 2024. doi:  10.1016/j.canlet.2024.216871 | 
| [8] | L. Tang, S. Pan, X. Wei, X. Xu, and Q. Wei, “Arming CAR-T cells with cytokines and more: Innovations in the fourth-generation CAR-T development,” Molecular Therapy, vol. 31, no. 11, pp. 3146–3162, 2023. doi:  10.1016/j.ymthe.2023.09.021 | 
| [9] | S. Pandit, P. Agarwalla, F. Song, A. Jansson, G. Dotti, and Y. Brudno, “Implantable CAR T cell factories enhance solid tumor treatment,” Biomaterials, vol. 308, p. 122580, 2024. doi:  10.1016/j.biomaterials.2024.122580 | 
| [10] | G. C. Russell, Y. Hamzaoui, D. Rho, G. Sutrave, J. S. Choi, D. S. Missan, G. A. Reckard, M. P. Gustafson, and G. B. Kim, “Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers,” Cytotherapy, vol. 26, no. 8, pp. 842–857, 2024. | 
| [11] | J. Pan, Y. Tan, G. Wang, et al., “Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial,” J. Clinical Oncology, vol. 39, no. 30, pp. 3340–3351, 2021. doi:  10.1200/JCO.21.00389 | 
| [12] | M. Al-Haideri, S. B. Tondok, S. H. Safa, et al., “CAR-T cell combination therapy: The next revolution in cancer treatment,” Cancer Cell Int., vol. 22, no. 1, p. 365, 2022. doi:  10.1186/s12935-022-02778-6 | 
| [13] | N. Singh and M. V. Maus, “Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy,” Immunity, vol. 56, no. 10, pp. 2296–2310, 2023. | 
| [14] | R. Rezaei, H. E. G. Ghaleh, M. Farzanehpour, R. Dorostkar, R. Ranjbar, M. Bolandian, M. M. Nodooshan, and A. G. Alvanegh, “Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy,” Cancer Gene Therapy, vol. 29, no. 6, pp. 647–660, 2022. doi:  10.1038/s41417-021-00359-9 | 
| [15] | N. Dullerud and V. D. Jonsson, “Cellular immunotherapy treatment scheduling to address antigen escape,” in Proc. 59th IEEE Conf. Decision and Control, 2020, pp. 4634–4639. | 
| [16] | S. Dey and H. Xu, “Distributed adaptive flocking control for large-scale multiagent systems,” IEEE Trans. Neural Networks and Learning Systems, 2024. DOI:  10.1109/TNNLS.2023.3343666. | 
| [17] | Z. Song, L. Gao, Z. Wang, and P. Li, “Adaptive neural control of constrained MIMO nonlinear systems with asymmetric input saturation and dead zone,” IEEE Trans. Neural Networks and Learning Systems, 2023. DOI:  10.1109/TNNLS.2023.3321596. | 
| [18] | X. Wang, C. Hua, and Y. Qiu, “Event-triggered model-free adaptive control for nonlinear multiagent systems under jamming attacks,” IEEE Trans. Neural Networks and Learning Systems, 2023. DOI:  10.1109/TNNLS.2023.3279144. | 
| [19] | M. Kumar, K. Rajagopal, S. N. Balakrishnan, and N. T. Nguyen, “Reinforcement learning based controller synthesis for flexible aircraft wings,” IEEE/CAA J. Autom. Sinica, vol. 1, no. 4, pp. 435–448, 2014. doi:  10.1109/JAS.2014.7004670 | 
| [20] | M. Ha, D. Wang, and D. Liu, “Discounted iterative adaptive critic designs with novel stability analysis for tracking control,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1262–1272, 2022. | 
| [21] | Z. Gao and G. Guo, “Command filtered finite/fixed-time heading tracking control of surface vehicles,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1667–1676, 2021. doi:  10.1109/JAS.2021.1004135 | 
| [22] | Y. Jiang, D. Shi, J. Fan, T. Chai, and T. Chen, “Event-triggered model reference adaptive control for linear partially time-variant continuous-time systems with nonlinear parametric uncertainty,” IEEE Trans. Autom. Control, vol. 68, no. 3, pp. 1878–1885, 2023. doi:  10.1109/TAC.2022.3169847 | 
| [23] | H. Wang, K. Xu, and H. Zhang, “Adaptive finite-time tracking control of nonlinear systems with dynamics uncertainties,” IEEE Trans. Autom. Control, vol. 68, no. 9, pp. 5737–5744, 2023. doi:  10.1109/TAC.2022.3226703 | 
| [24] | J. Yu, S. Cheng, P. Shi, and C. Lin, “Command-filtered neuroadaptive output-feedback control for stochastic nonlinear systems with input constraint,” IEEE Trans. Cybern., vol. 53, no. 4, pp. 2301–2310, 2023. | 
| [25] | G. Chen and J. Dong, “Approximate optimal adaptive prescribed performance control for uncertain nonlinear systems with feature information,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 54, no. 4, pp. 2298–2308, 2024. doi:  10.1109/TSMC.2023.3342854 | 
| [26] | L. Zhang, W. Che, C. Deng, and Z. Wu, “Prescribed performance control for multiagent systems via fuzzy adaptive event-triggered strategy,” IEEE Trans. Fuzzy Systems, vol. 30, no. 12, pp. 5078–5090, 2022. doi:  10.1109/TFUZZ.2022.3165629 | 
| [27] | C. Zhang, X. Ren, J. Na, and D. Zheng, “Safe dual-layer nested adaptive prescribed performance control of nonlinear systems with discontinuous reference,” IEEE Trans. Industrial Electronics, vol. 71, no. 8, pp. 9128–9138, 2024. doi:  10.1109/TIE.2023.3317842 | 
| [28] | X. Liu, H. Zhang, J. Sun, and X. Guo, “Dynamic threshold finite-time prescribed performance control for nonlinear systems with dead-zone output,” IEEE Trans. Cybern., vol. 54, no. 1, pp. 655–664, 2024. doi:  10.1109/TCYB.2023.3279841 | 
| [29] | Z. Xu, C. Sun, and Q. Liu, “Output-feedback prescribed performance control for the full-state constrained nonlinear systems and its application to DC motor system,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 53, no. 7, pp. 3898–3907, 2023. doi:  10.1109/TSMC.2022.3216119 | 
| [30] | H. Ren, Z. Cheng, J. Qin, and R. Lu, “Deception attacks on event-triggered distributed consensus estimation for nonlinear systems,” Automatica, vol. 154, p. 111100, 2023. | 
| [31] | H. Ren, H. Ma, H. Li, and Z. Wang, “Adaptive fixed-time control of nonlinear MASs with actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1252–1262, 2023. doi:  10.1109/JAS.2023.123558 | 
| [32] | A. Zou, Y. Liu, Z. Hou, and Z. Hu, “Practical predefined-time output-feedback consensus tracking control for multiagent systems,” IEEE Trans. Cybern., vol. 53, no. 8, pp. 5311–5322, 2023. doi:  10.1109/TCYB.2022.3207325 | 
| [33] | J. Sun, Y. Yan, H. Zhang, and M. Shao, “Consensus-fuzzy ecological joint therapy for multi-tumor populations,” IEEE Trans. Fuzzy Systems, vol. 52, no. 3, pp. 699–709, 2024. | 
| [34] | G. Cui, J. Yu, and P. Shi, “Observer-based finite-time adaptive fuzzy control with prescribed performance for nonstrict-feedback nonlinear systems,” IEEE Trans. Fuzzy Systems, vol. 30, no. 3, pp. 767–778, 2020. | 
| [35] | H. Liang, D. Li, Y. Pan, and T. Li, “Adaptive predictor-based event-triggered tracking control for nonlinear multiagent systems with fault detect-switch-compensate mechanism,” IEEE Trans. Systems, Man, and Cybern.: Systems, vol. 54, no. 2, pp. 1276–1287, 2024. | 
| [36] | H. Li, Z. Wang, C. Lan, P. Wu, and N. Zeng, “A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection,” IEEE Trans. Neural Networks and Learning Systems, vol. 35, no. 11, pp. 16533–16547, 2024. doi:  10.1109/TNNLS.2023.3295461 | 
| [37] | H. Li, Z. Fang, L. Hu, H. Liu, P. Wu, and N. Zeng, “A novel population robustness-based switching response framework for solving dynamic multi-objective problems,” Neurocomputing, vol. 583, p. 127601, 2024. doi:  10.1016/j.neucom.2024.127601 |