 Volume 12
							Issue 3
								
						 Volume 12
							Issue 3 
						IEEE/CAA Journal of Automatica Sinica
| Citation: | X. Ma, T. Chen, and Y. Wang, “Dynamic process monitoring based on dot product feature analysis for thermal power plants,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 3, pp. 563–574, Mar. 2025. doi: 10.1109/JAS.2024.124908 | 
 
	                | [1] | L. Wen, L. Gao, and X. Li, “A new deep transfer learning based on sparse auto-encoder for fault diagnosis,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 49, no. 1, pp. 136–144, Jan. 2019. doi:  10.1109/TSMC.2017.2754287 | 
| [2] | W. G. Fenton, T. M. McGinnity, and L. P. Maguire, “Fault diagnosis of electronic systems using intelligent techniques: A review,” IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.), vol. 31, no. 3, pp. 269–281, Aug. 2001. doi:  10.1109/5326.971655 | 
| [3] | D. Wu, D. Zhou, M. Chen, J. Zhu, F. Yan, S. Zheng, and E. Guo, “Output-relevant common trend analysis for KPI-related nonstationary process monitoring with applications to thermal power plants,” IEEE Trans. Ind. Informat., vol. 17, no. 10, pp. 6664–6675, Oct. 2021. doi:  10.1109/TII.2020.3041516 | 
| [4] | B. Pattipati, C. Sankavaram, and K. Pattipati, “System identification and estimation framework for pivotal automotive battery management system characteristics,” IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.), vol. 41, no. 6, pp. 869–884, Nov. 2011. | 
| [5] | Z. Huang, Z. Wang, and H. Zhang, “Multilevel feature moving average ratio method for fault diagnosis of the microgrid inverter switch,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 177–185, Apr. 2017. doi:  10.1109/JAS.2017.7510496 | 
| [6] | E. Principi, D. Rossetti, S. Squartini, and F. Piazza, “Unsupervised electric motor fault detection by using deep autoencoders,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 441–451, Mar. 2019. doi:  10.1109/JAS.2019.1911393 | 
| [7] | Y. Wang, Y. Si, B. Huang, and Z. Lou, “Survey on the theoretical research and engineering applications of multivariate statistics process monitoring algorithms: 2008–2017,” Can. J. Chem. Eng., vol. 96, no. 10, pp. 2073–2085, Oct. 2018. doi:  10.1002/cjce.23249 | 
| [8] | B. Pourbabaee, M. J. Roshtkhari, and K. Khorasani, “Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 48, no. 12, pp. 2095–2104, Dec. 2018. doi:  10.1109/TSMC.2017.2705582 | 
| [9] | Y. Jiang and S. Yin, “Recent advances in key-performance-indicator oriented prognosis and diagnosis with a MATLAB toolbox: DB-KIT,” IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 2849–2858, May 2019. | 
| [10] | X. Wang, X. Liu, and Y. Li, “An incremental model transfer method for complex process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1268–1280, Sept. 2019. doi:  10.1109/JAS.2019.1911618 | 
| [11] | H. Chen, B. Jiang, N. Lu, and Z. Mao, “Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains,” IEEE Trans. Veh. Technol., vol. 67, no. 6, pp. 4819–4830, Jun. 2018. | 
| [12] | J. Zhang, D. Zhou, and M. Chen, “Adaptive cointegration analysis and modified RPCA with continual learning ability for monitoring multimode nonstationary processes,” IEEE Trans. Cybern., vol. 53, no. 8, pp. 4841–4854, Aug. 2023. doi:  10.1109/TCYB.2021.3140065 | 
| [13] | H. Su and G. Zheng, “A partial least squares regression-based fusion model for predicting the trend in drowsiness,” IEEE Trans. Syst., Man, Cybern.—Part A: Syst. Humans, vol. 38, no. 5, pp. 1085–1092, Sept. 2008. doi:  10.1109/TSMCA.2008.2001067 | 
| [14] | C. Shang, B. Huang, F. Yang, and D. Huang, “Slow feature analysis for monitoring and diagnosis of control performance,” J. Process Control, vol. 39, pp. 21–34, Mar. 2016. doi:  10.1016/j.jprocont.2015.12.004 | 
| [15] | Z. Lou, Y. Wang, Y. Si, and S. Lu, “A novel multivariate statistical process monitoring algorithm: Orthonormal subspace analysis,” Automatica, vol. 138, p. 110148, Apr. 2022. doi:  10.1016/j.automatica.2021.110148 | 
| [16] | Q. Chen, Z. Liu, X. Ma, and Y. Wang, “Artificial neural correlation analysis for performance-indicator-related nonlinear process monitoring,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1039–1049, Feb. 2022. | 
| [17] | J. Shang, M. Chen, H. Ji, and D. Zhou, “Recursive transformed component statistical analysis for incipient fault detection,” Automatica, vol. 80, pp. 313–327, Jun. 2017. doi:  10.1016/j.automatica.2017.02.028 | 
| [18] | Y. Qin, Y. Yan, H. Ji, and Y. Wang, “Recursive correlative statistical analysis method with sliding windows for incipient fault detection,” IEEE Trans. Ind. Electron., vol. 69, no. 4, pp. 4185–4194, Apr. 2022. doi:  10.1109/TIE.2021.3070521 | 
| [19] | Y. Wang, T. Hou, M. Cui, and X. Ma, “Orthogonal stationary component analysis for nonstationary process monitoring,” IEEE Trans. Instrum. Meas., vol. 72, p. 3527309, Aug. 2023. | 
| [20] | C.-Y. Zhang, Z.-L. Yao, H.-Y. Yao, F. Huang, and C. L. P. Chen, “Dynamic representation learning via recurrent graph neural networks,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 53, no. 2, pp. 1284–1297, Feb. 2023. | 
| [21] | W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation by dynamic principal component analysis,” Chemometr. Intell. Lab. Syst., vol. 30, no. 1, pp. 179–196, Nov. 1995. doi:  10.1016/0169-7439(95)00076-3 | 
| [22] | Z. Lou, D. Shen, and Y. Wang, “Two-step principal component analysis for dynamic processes monitoring,” Can. J. Chem. Eng., vol. 96, no. 1, pp. 160–170, Jan. 2018. doi:  10.1002/cjce.22855 | 
| [23] | C. Shang, B. Huang, and D. Huang, “A systematic approach to dynamic monitoring of industrial processes based on second-order slow feature analysis,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 387–392, Oct. 2018. | 
| [24] | J. Zheng, C. Zhao, and F. Gao, “Retrospective comparison of several typical linear dynamic latent variable models for industrial process monitoring,” Comput. Chem. Eng., vol. 157, p. 107587, Jan. 2022. doi:  10.1016/j.compchemeng.2021.107587 | 
| [25] | X. Ma, Y. Si, Z. Yuan, Y. Qin, and Y. Wang, “Multistep dynamic slow feature analysis for industrial process monitoring,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9535–9548, Dec. 2020. | 
| [26] | X. Ma, Y. Si, Y. Qin, and Y. Wang, “Fault detection for dynamic processes based on recursive innovational component statistical analysis,” IEEE Trans. Autom. Sci. Eng., vol. 20, no. 1, pp. 310–319, Jan. 2023. doi:  10.1109/TASE.2022.3149591 | 
| [27] | J. Shang and M. Chen, “Recursive dynamic transformed component statistical analysis for fault detection in dynamic processes,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 578–588, Jan. 2018. doi:  10.1109/TIE.2017.2721929 | 
| [28] | Y. Dong, S. J. Qin, “A novel dynamic PCA algorithm for dynamic data modeling and process monitoring,” J. Process Control, vol. 67, pp. 1–11, Jul. 2018. doi:  10.1016/j.jprocont.2017.05.002 | 
| [29] | W. Yu, C. Zhao, and B. Huang, “Recursive cointegration analytics for adaptive monitoring of nonstationary industrial processes with both static and dynamic variations,” J. Process Control, vol. 92, pp. 319–332, Aug. 2020. | 
| [30] | D. Zhou, Y. Zhao, Z. Wang, X. He, and M. Gao, “Review on diagnosis techniques for intermittent faults in dynamic systems,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 2337–2347, Mar. 2020. doi:  10.1109/TIE.2019.2907500 | 
| [31] | J. Yu, L. Ye, L. Zhou, Z. Yang, F. Shen, and Z. Song, “Dynamic process monitoring based on variational Bayesian canonical variate analysis,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 4, pp. 2412–2422, Apr. 2022. doi:  10.1109/TSMC.2021.3051054 | 
| [32] | C. Zhao and H. Sun, “Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4749–4758, Jun. 2019. doi:  10.1109/TIE.2018.2864703 | 
| [33] | G. H. Golub and C. F. Van Loan, Matrix Computations. 4th ed. Baltimore, USA: JHU Press, 2012. | 
| [34] | H. Ji, “Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis,” Chem. Eng. Sci., vol. 230, p. 116223, Feb. 2021. | 
| [35] | L. Feng and C. Zhao, “Fault description based attribute transfer for zero-sample industrial fault diagnosis,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 1852–1862, Mar. 2021. doi:  10.1109/TII.2020.2988208 |