A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 2
Feb.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
L. Yan, Q. Li, and K. Li, “Object helps U-Net based change detectors,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 548–550, Feb. 2024. doi: 10.1109/JAS.2023.124032
Citation: L. Yan, Q. Li, and K. Li, “Object helps U-Net based change detectors,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 548–550, Feb. 2024. doi: 10.1109/JAS.2023.124032

Object Helps U-Net Based Change Detectors

doi: 10.1109/JAS.2023.124032
More Information
  • loading
  • [1]
    L. Yan, W. Zheng, and F.-Y. Wang, “Heterogeneous image knowledge driven visual perception,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 255–257, 2024. doi: 10.1109/JAS.2023.123435
    W. Zheng, L. Yan, C. Gou, and F.-Y. Wang, “Computational knowledge vision: Paradigmatic knowledge based prescriptive learning and reasoning for perception and vision,” Artificial Intelligence Review, vol. 55, no. 8, pp. 5917–5952, 2022.
    Z. Qin, X. Lu, X. Nie, D. Liu, Y. Yin, and W. Wang, “Coarse-to-fine video instance segmentation with factorized conditional appearance flows,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 5, pp. 1192–1208, 2023. doi: 10.1109/JAS.2023.123456
    Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ishwar, “CDnet 2014: An expanded change detection benchmark dataset,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2014, pp. 387–394.
    M. Duan, K. Li, X. Liao, and K. Li, “A parallel multiclassification algorithm for big data using an extreme learning machine,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 6, pp. 2337–2351, 2018. doi: 10.1109/TNNLS.2017.2654357
    L. A. Lim and H. Y. Keles, “Learning multi-scale features for foreground segmentation,” Pattern Analysis and Applications, vol. 23, pp. 1369–1380, 2020. doi: 10.1007/s10044-019-00845-9
    W. Zheng, K. Wang, and F.-Y. Wang, “A novel background subtraction algorithm based on parallel vision and bayesian GANS,” Neurocomputing, vol. 394, pp. 178–200, 2020. doi: 10.1016/j.neucom.2019.04.088
    W. Zheng, K. Wang, and F. Wang, “Background subtraction algorithm based on bayesian generative adversarial networks,” ACTA Automatica Sinica, vol. 44, no. 5, pp. 878–890, 2018.
    G. Rahmon, F. Bunyak, G. Seetharaman, and K. Palaniappan, “Motion U-Net: Multi-cue encoder-decoder network for motion segmentation,” in Proc. Int. Conf. Pattern Recognition, 2021, pp. 8125–8132.
    O. Tezcan, P. Ishwar, and J. Konrad, “BSUV-Net: A fully-convolutional neural network for background subtraction of unseen videos,” in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision, 2020, pp. 2774–2783.
    L. A. Lim and H. Y. Keles, “Foreground segmentation using convolutional neural networks for multiscale feature encoding,” Pattern Recognition Letters, vol. 112, pp. 256–262, 2018. doi: 10.1016/j.patrec.2018.08.002
    G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLOv8,” 2023.[Online]. Available: https://github.com/ultralytics/ultralytics.
    S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE TPAMI, vol. 39, no. 6, pp. 1137–1149, 2017. doi: 10.1109/TPAMI.2016.2577031


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (113) PDF downloads(13) Cited by()


    DownLoad:  Full-Size Img  PowerPoint