A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 4
Apr.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Zheng, J. Zheng, K. Shao, H. Zhao, H. Xie, and  H. Wang,  “Adaptive trajectory tracking control for nonholonomic wheeled mobile robots: A barrier function sliding mode approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1007–1021, Apr. 2024. doi: 10.1109/JAS.2023.124002
Citation: Y. Zheng, J. Zheng, K. Shao, H. Zhao, H. Xie, and  H. Wang,  “Adaptive trajectory tracking control for nonholonomic wheeled mobile robots: A barrier function sliding mode approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1007–1021, Apr. 2024. doi: 10.1109/JAS.2023.124002

Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots: A Barrier Function Sliding Mode Approach

doi: 10.1109/JAS.2023.124002
Funds:  This work was supported in part by the China Scholarship Council (202106690037) and the Natural Science Foundation of Anhui Province (19080885QE194)
More Information
  • The trajectory tracking control performance of nonholonomic wheeled mobile robots (NWMRs) is subject to nonholonomic constraints, system uncertainties, and external disturbances. This paper proposes a barrier function-based adaptive sliding mode control (BFASMC) method to provide high-precision, fast-response performance and robustness for NWMRs. Compared with the conventional adaptive sliding mode control, the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds. Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function. The benefit is that the overestimation of control gain can be eliminated, resulting in chattering reduction. Moreover, a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator. The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the pre-specified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.

     

  • loading
  • [1]
    Y. Wang, B. Ren, Q. Zhong, and J. Dai, “Bounded integral controller with limited control power for nonlinear multiple-input multiple-output systems,” IEEE Trans. Contr. Syst. Technol, vol. 29, no. 3, pp. 1348–1355, May 2021. doi: 10.1109/TCST.2020.2989691
    [2]
    M. Boukens, A. Boukabou, and M. Chadli, “A real time self-tuning motion controller for mobile robot systems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 84–96, Jan. 2019. doi: 10.1109/JAS.2018.7511216
    [3]
    H. Zhang, B. Li, B. Xiao, Y. Yang, and J. Ling, “Nonsingular recursive-structure sliding mode control for high-order nonlinear systems and an application in a wheeled mobile robot,” ISA Trans, vol. 130, pp. 553–564, Nov. 2022. doi: 10.1016/j.isatra.2022.04.021
    [4]
    B. Li, H. Zhang, B. Xiao, C. Wang, and Y. Yang, “Fixed-time integral sliding mode control of a high-order nonlinear system,” Nonlinear Dyn, vol. 107, no. 1, pp. 909–920, Oct. 2022. doi: 10.1007/s11071-021-06984-1
    [5]
    S. Fadlo, A. A. Elmahjoub, and N. Rabbah, “Optimal trajectory tracking control for a wheeled mobile robot using backstepping technique,” Int. J. Electr. Comput. Eng, vol. 12, no. 6, pp. 5979–5987, Dec. 2022.
    [6]
    X. Wu, P. Jin, T. Zou, Z. Qi, H. Xiao, and P. Lou, “Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots,” J. Intell. Robot. Syst, vol. 96, no. 1, pp. 109–121, Jan. 2019. doi: 10.1007/s10846-019-00980-9
    [7]
    H. Xiao, Z. Li, C. Yang, L. Zhang, P. Yuan, L. Ding, and T. Wang, “Robust stabilization of a wheeled mobile robot using model predictive control based on neurodynamics optimization,” IEEE Trans. Ind. Electron, vol. 64, no. 1, pp. 505–516, Jan. 2017. doi: 10.1109/TIE.2016.2606358
    [8]
    Y. Zhang, X. Zhao, B. Tao, and H. Ding, “Point stabilization of nonholonomic mobile robot by Bézier smooth subline constraint nonlinear model predictive control,” IEEE/ASME Trans. Mechatron, vol. 26, no. 2, pp. 990–1001, Apr. 2021. doi: 10.1109/TMECH.2020.3014967
    [9]
    J. Li, J. Wang, H. Peng, Y. Hu, and H. Su, “Fuzzy-torque approximation-enhanced sliding mode control for lateral stability of mobile robot,” IEEE Trans. Syst. Man Cybern. Syst, vol. 52, no. 4, pp. 2491–2500, Apr. 2022. doi: 10.1109/TSMC.2021.3050616
    [10]
    C. Juang, T. Jeng, and Y. Chang, “An interpretable fuzzy system learned through online rule generation and multiobjective ACO with a mobile robot control application,” IEEE Trans. Cybern, vol. 46, no. 12, pp. 2706–2718, Dec. 2016. doi: 10.1109/TCYB.2015.2486779
    [11]
    Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C. Su, “Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach,” IEEE Trans. Syst. Man Cybern. Syst, vol. 46, no. 6, pp. 740–749, Jun. 2016. doi: 10.1109/TSMC.2015.2465352
    [12]
    P. Guo, Z. Liang, X. Wang, and M. Zheng, “Adaptive trajectory tracking of wheeled mobile robot based on fixed-time convergence with uncalibrated camera parameters,” ISA Trans, vol. 99, pp. 1–8, Apr. 2020. doi: 10.1016/j.isatra.2019.09.021
    [13]
    H. Shi, M. Xu, and K. Hwang, “A fuzzy adaptive approach to decoupled visual servoing for a wheeled mobile robot,” IEEE Trans. Fuzzy Syst, vol. 28, no. 12, pp. 3229–3243, Dec. 2020. doi: 10.1109/TFUZZ.2019.2931219
    [14]
    A. Mustafa, N. K. Dhar, and N. K. Verma, “Event-triggered sliding mode control for trajectory tracking of nonlinear systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 307–314, Jan. 2020. doi: 10.1109/JAS.2019.1911654
    [15]
    P. Zhang, J. Zhang, and Z. Zhang, “Design of RBFNN-based adaptive sliding mode control strategy for active rehabilitation robot,” IEEE Access, vol. 8, pp. 155 538–155 547, Aug. 2020. doi: 10.1109/ACCESS.2020.3018737
    [16]
    J. Yu, J. Liu, Z. Wu, and H. Fang, “Depth control of a bioinspired robotic dolphin based on sliding-mode fuzzy control method,” IEEE Trans. Ind. Electron, vol. 65, no. 3, pp. 2429–2438, Mar. 2018. doi: 10.1109/TIE.2017.2745451
    [17]
    S. G. Tzafestas, “Mobile robot control and navigation: A global overview,” J. Intell. Robot. Syst, vol. 91, pp. 35–58, Mar. 2018. doi: 10.1007/s10846-018-0805-9
    [18]
    Z. Sun, J. Zheng, Z. Man, and H. Wang, “Robust control of a vehicle steer-by-wire system using adaptive sliding mode,” IEEE Trans. Ind. Electron, vol. 63, no. 4, pp. 2251–2262, Nov. 2015.
    [19]
    Y. Yin, J. Liu, J. A. Sanchez, L. Wu, S. Vazquez, J. I. Leon, and L. G. Franquelo, “Observer-based adaptive sliding mode control of npc converters: An RBF neural network approach,” IEEE Trans. Power Electron, vol. 34, no. 4, pp. 3831–3841, Jul. 2018.
    [20]
    A. AlGhanimi, J. Zheng, and Z. Man, “A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems,” Int. J. Control, vol. 90, no. 3, pp. 480–491, Jun. 2017. doi: 10.1080/00207179.2016.1185157
    [21]
    R. Bai, “Adaptive sliding-mode control of automotive electronic throttle in the presence of input saturation constraint,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 878–884, Jul. 2018. doi: 10.1109/JAS.2018.7511147
    [22]
    J. Fei, H. Wang, and Y. Fang, “Novel neural network fractional-order sliding-mode control with application to active power filter,” IEEE Trans. Syst.,Man,Cybern, vol. 52, no. 6, pp. 3508–3518, Jun. 2022. doi: 10.1109/TSMC.2021.3071360
    [23]
    J. Zheng, H. Wang, Z. Man, J. Jin, and M. Fu, “Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode,” IEEE/ASME Trans. Mechatron, vol. 20, no. 4, pp. 1743–1752, Sept. 2014.
    [24]
    S. Lian, W. Meng, Z. Lin, K. Shao, J. Zheng, H. Li, and R. Lu, “Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron, vol. 69, no. 2, pp. 1597–1607, Feb. 2021.
    [25]
    M. Cui, W. Liu, H. Liu, H. Jiang, and Z. Wang, “Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties,” Nonlinear Dyn, vol. 83, pp. 667–683, Aug. 2016. doi: 10.1007/s11071-015-2355-z
    [26]
    S. Peng and W. Shi, “Adaptive fuzzy output feedback control of a nonholonomic wheeled mobile robot,” IEEE Access, vol. 6, pp. 43414–43424, Aug. 2018. doi: 10.1109/ACCESS.2018.2862163
    [27]
    K. Liu, H. Gao, H. Ji, and Z. Hao, “Adaptive sliding mode based disturbance attenuation tracking control for wheeled mobile robots,” Int. J. Contr. Autom. Syst, vol. 18, no. 5, pp. 1288–1298, Dec. 2020. doi: 10.1007/s12555-019-0262-7
    [28]
    J. Zhai and Z. Song, “Adaptive sliding mode trajectory tracking control for wheeled mobile robots,” Int. J. Control, vol. 92, no. 10, pp. 2255–2262, Feb. 2019. doi: 10.1080/00207179.2018.1436194
    [29]
    M. Taleb, F. Plestan, and B. Bououlid, “An adaptive solution for robust control based on integral high-order sliding mode concept,” Int. J. Robust Nonlinear Contr, vol. 25, no. 8, pp. 1201–1213, Jan. 2015. doi: 10.1002/rnc.3135
    [30]
    F. Plestan, Y. Shtessel, V. Brégeault, and A. Poznyak, “Sliding mode control with gain adaptation—application to an electropneumatic actuator,” Contr. Eng. Pract, vol. 21, no. 5, pp. 679–688, May 2013. doi: 10.1016/j.conengprac.2012.04.012
    [31]
    V. I. Utkin and A. S. Poznyak, “Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method,” Automatica, vol. 49, no. 1, pp. 39–47, Jan. 2013. doi: 10.1016/j.automatica.2012.09.008
    [32]
    B. Ning, Q.-L. Han, and X. Ge, “Practical bipartite consensus for multi-agent systems: A barrier function-based adaptive sliding-mode control approach,” J. Automa. Intell, vol. 2, no. 1, pp. 14–19, Feb. 2023. doi: 10.1016/j.jai.2023.100019
    [33]
    H. Obeid, S. Laghrouche, L. Fridman, Y. Chitour, and M. Harmouche, “Barrier function-based adaptive super-twisting controller,” IEEE Trans. Automat. Contr, vol. 65, no. 11, pp. 4928–4933, Nov. 2020. doi: 10.1109/TAC.2020.2974390
    [34]
    C. Chen, T. S. Li, Y. Yeh, and C. Chang, “Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots,” Mechatronics, vol. 19, no. 2, pp. 156–166, Mar. 2009. doi: 10.1016/j.mechatronics.2008.09.004
    [35]
    L. Ding, L. Huang, S. Li, H. Gao, H. Deng, Y. Li, and G. Liu, “Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain,” IEEE Trans. Robot, vol. 36, no. 3, pp. 894–909, Jun. 2020. doi: 10.1109/TRO.2020.2981822
    [36]
    D. GómezGutiérrez, “On the design of nonautonomous fixed-time controllers with a predefined upper bound of the settling time,” Int. J. Robust Nonlinear Contr, vol. 30, no. 10, pp. 3871–3885, Apr. 2020. doi: 10.1002/rnc.4976
    [37]
    H. K. Khalil, “Nonlinear systems third edition,” Patience Hall, vol. 115, 2002.
    [38]
    E. Moulay and W. Perruquetti, “Finite time stability and stabilization of a class of continuous systems,” J. Math. Anal. Appl, vol. 323, no. 2, pp. 1430–1443, Nov. 2006. doi: 10.1016/j.jmaa.2005.11.046
    [39]
    H. Agarwal, J. E. Renaud, E. L. Preston, and D. Padmanabhan, “Uncertainty quantification using evidence theory in multidisciplinary design optimization,” Reliab. Eng. Syst. Saf, vol. 85, no. 1–3, pp. 281–294, Apr. 2004. doi: 10.1016/j.ress.2004.03.017
    [40]
    J. Abellán and É. Bossé, “Critique of recent uncertainty measures developed under the evidence theory and belief intervals,” IEEE Trans. Syst.,Man,Cybern, vol. 50, no. 3, pp. 1186–1192, Mar. 2020. doi: 10.1109/TSMC.2017.2770128
    [41]
    H. Gao, Z. Li, X. Yu, and J. Qiu, “Hierarchical multiobjective heuristic for pcb assembly optimization in a beam-head surface mounter,” IEEE Trans. Cybern, vol. 52, no. 7, pp. 6911–6924, Jul. 2022. doi: 10.1109/TCYB.2020.3040788

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (261) PDF downloads(118) Cited by()

    Highlights

    • The finite-time control with predefined precision for nonholonomic wheeled mobile robot with uncertainties is achieved
    • The proposed method eliminates the requirements for uncertainty bounds and guarantees the non-overestimation for control gain
    • The actuator saturation issue is prevented by introducing a modified barrier function-like control gain with specified performance

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return